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Résumé

Les travaux présentés dans cette thése abordent les problématiques de détection et suivi
d’objets, en utilisant un systéme de caméras collaboratives. L’idée principale de ['utilisation
de plusieurs caméras pour réaliser le suivi est de résoudre les problémes d’occultation que
les méthodes de suivi de mono-cameéra sont incapables de régler. Pour s’adapter des critéres
dans plusieurs applications de surveillance, nos travaux se concentrent sur le probleme de
suivi en ligne de plusieurs objets dans le contexte de plusieurs caméras synchronisées et
dont les champs de vue sont chevauchent. Dans le cas de notre étude, les axes suivants
ont été étudiés : premiérement, utiliser plusieurs caméras pour suivre une seule cible;
deuxiémement, suivre plusieurs d’objets simultanément; finalement, réidentifier les objets
qui réapparaissent ultérieurement dans le champs de vue. Dans les conditions ot les téaches
de suivi se font sur une scéne en plein air, 'apparence des objets (forme, couleur, texture,

.) change. Les changements sont dus aux conditions de luminosité variant a ’extérieur,
des mouvements des objets eux-mémes. Souvent, les performances de suivi sont dégradées
& cause de la perte de leurs cibles. Nous avons développé des algorithmes de suivi avec
multi-caméras qui permettent & chaque caméra de participer au processus de suivi des
autres caméras dans le réseau.

En détail, notre premiére contribution est une plateforme de suivi avec plusieurs caméras
basée sur les filtres particulaires qui permet & une caméra de collaborer avec les autres
caméras dans le cas ol la cible est occultée par ’environnement ou l'autres cibles. Le
modéle d’apparence d’objet est une représentation parcimonieuse ou les différentes ap-
parences d’une cible sont représentées by une combination de plusieurs patches d’image
de référence contenue dans un dictionnaire. Notre deuxiéme contribution concerne des
problémes d’occultation mutuelle entre objets. En pratique, les objets souvent s’occultent
mutuellement, particuliérement dans les scénes de foules. En adaptant une approche de
suivi de multi-objet avec le Processus de Décision Markovien au contexte d’un systéme de
caméras collaboratives, notre algorithme de suivi avec multi-caméras permet de résoudre
des problémes d’occultation dans le suivi par une seule caméra. Notre troisiéme contribu-
tion concerne de la réidentification des cibles d’une vue a ’autre. Nous avons reformulé le
probléme d’affectation de cibles entre deux vues comme une probléeme du plan de trans-
port optimal non-équilibré. Nous avons ensuite étendu les résultats d’affectation de cibles
dans les paires de caméras & notre algorithme de suivi par multi-caméra. En outre, nous
étudions les caractéristiques d’apparence qui permets de réidentifier des objets dans dif-
férentes vues comme I’histogramme de couleurs, des points d’intérét Lucas-Kanade ou des
caractéristiques extraites par des réseaux convolutifs profonds.

En ce concerne des expérimentations, nous avons évalué notre algorithme par les
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métriques communnes sur les bases de données publiques. Les résultats expérimentaux
ont montré la pertinence de nos algorithmes de suivi multi-caméras par rapport & une
seule caméra, ainsi que I'impact des différentes caractéristiques sur la performance de suivi
de notre approche de suivi par multi-caméras.
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Mots clés : Detection d’objets, Suivi de mono-objet, Suivi de multi-objet, Suivi de
multi-target multi-camera, Apprentissage profond de caractéristiques, Transport optimal.
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Abstract

The work presented in this thesis concerns the problem of visual multiple object tracking
using a system of collaborative cameras. The main idea of using a multi-camera system in
tracking is to solve occlusion problems, which single-camera tracking methods are unable
to solve. With multiple automated surveillance applications in mind, our work focuses
on the problem of online multi-object tracking in a multi-camera system in which fields
of view are overlapped, and video frames are synchronized. In the case of our study, the
thesis includes the following objectives: firstly, to track a single object in a multi-camera
system; secondly, to track multiple objects simultaneously; finally, to re-identify objects
which possibly reenter the fields of view of the cameras multiple times. In outdoor tracking
scenes, objects often change their appearances, including their shape, their size, and their
texture. The changes are due to the varying lighting condition and the movement of the
objects themselves. This causes tracking algorithms to lose their targets frequently, and
therefore degrades tracking performance. We developed multi-camera tracking algorithms
that allow each camera to participate in the overall tracking process of the network to
improve its tracking result.

In detail, our first contribution is a multi-camera tracking framework based on particle
filters that allows a camera to collaborate with other cameras when targets are occluded
by the environment or other targets. The model used for object appearance, in our frame-
work, is the sparse representation, in which the variant appearances of a target are repre-
sented by a combination of reference image patches contained in a dictionary. Our second
contribution addresses the problem of mutual occlusion between objects. In practice, ob-
jects are often occluded, especially in crowded scenes. By adopting a Markov Decision
Process multi-object tracking algorithm to the context of multiple collaborative cameras,
our tracking algorithm mainly solves the problems of occlusion occurring in single-camera
tracking. Our third contribution concerns re-identifying targets across cameras. We refor-
mulated the assignment problem of targets between two views as an unbalanced optimal
transport problem. The target assignments in pairs of cameras are then adapted to our
multi-camera tracking algorithm. Additionally, we studied multiple appearance features
that allow the multi-camera system to re-identify multiple targets in different views such
as color histogram, Lucas-Kanade keypoints, or deep characteristic features extracted by
convolutional neural networks.

Concerning experimentation, we evaluated our algorithms by multiple common metrics
on public multi-camera video databases. Our experiments showed the relevance of our
multi-camera tracking algorithms to single-camera ones, as well as the impact of different
characteristic features on the tracking performance of our multi-camera tracking approach.
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Keywords :  Object Detection, Single-Object Tracking, Multi-Object Tracking, Multi-
Target Multi-Camera Tracking, Deep Feature Learning, Optimal Transport.
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Chapter 1

Introduction

1.1 Motivation

Since the last decades, technological advances in computers and cameras have brought
image technologies into many aspects of real life. With the easy accessibility to cameras and
massive data storage systems, single or multiple camera systems are built for many, either
civil or military applications. One of the most popular applications of camera systems is
security surveillance. Since the availability of camera systems, security surveillance with
camera systems has been widely deployed to prevent criminal activities in public or private
areas. Additionally, as the terror acts of extremist or terrorist groups have happened around
the world, especially for the last five years, and big cities such as New York, London, Paris,
Barcelona seemed to be the vulnerable targets. The public safety concern has been risen
at the highest level than ever. Consequently, the security camera surveillance system has
become so demanding and essential for police authorities to ensure the safety of their
citizens.

In practice, video surveillance systems have demonstrated their effectiveness to help
police force quickly identify and track down suspects or criminals in investigations. In 2013,
when the Boston bombing happened, the suspects have been identified quickly because of
the video surveillance system in New York City. However, it took the law enforcement
force in Boston three years to finally end this dramatic manhunt. In China, the authorities
deployed the SkyNet Project, a national surveillance system, which consists of more than
20 million cameras set up in public spaces and a massive computation center to process
millions of images a day gathered from those cameras. This surveillance system is expected
to detect in prior crimes that potentially happen in public and to observe the behavior of
their citizens, which is part of the social credit program in this country. A couple of years
ago, Amazon launched new stores in the US, which is named Amazon Go. The specialty
of this new kind of store is that shoppers are not required to check out when they leave.
Therefore, people do not have to wait in line; all that they need is to install Amazon Go
apps linking with a credit card, pick up their items, and walk out. A complex sensor system
in the store can detect when products are taken and returned to the shelves, meanwhile, a
camera network monitors their customers and add the products they picked to their virtual
cart on their phone apps. As we can see, the success of this initiative firmly relies on its
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automatic surveillance camera system. Amazon Go stores have already opened in several
cities in the US, and Amazon wants to expand its future of retail in the UK soon. Beyond
land security, camera surveillance systems are used for marine safety, in which they are
usually installed on vessels or coast guard boats to observe any suspicious movement and
detect pirates or drug smuggling ships.

Besides the apparent advantages of security camera systems, there are several setbacks
such as most of the camera surveillance systems are centralized. In other words, this kind of
system comprises a network of cameras set up around outdoor or indoor spaces connecting
to a surveillance center where all video streams are gathered, recorded in a database. In
most cases, those videos are streamed directly on plenty of screens, and one or several
security agents watch all these screens to oversee the surveillance areas regularly. The
general architecture of camera surveillance systems is shown in the Figure [1.1]
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Figure 1.1 — The general architecture of camera surveillance systems

However, a study in 2002 conducted by Brandon C. Welsh and David P. Farrington [222]
showed the ineffectiveness of CCTVIH on reducing crimes. That is explained by the fact
that not all of those cameras are truly monitored. In reality, it is hard for one security
agent to watch over lots of screens in a long time. It is evident that by the end of the
day, they can be distracted and eventually miss events, which potentially leads to a crime.
On the other hand, in the case of reviewing all video records for crime investigation, fast-

! Closed-Circuit Television
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forwarding every single video is an exhausting and time-consuming work. In some cases,
to lower the cost of security, only several available screens are used to display all video
streams. The images from cameras are switched periodically and not always monitored
constantly. Another study on how security CCTV cameras impact crimes in the urban
environment led research on about 1000 camera networks [I89] in Chicago city in 2013.
The effectiveness of surveillance cameras relies on whether they are being overseen.

As a result of the increasing demand for CCTV cameras for public safety, it is required
an automatic surveillance systems without adding more human resources. This system
involved three essential tasks, including detection, tracking, and re-identification, which
are the aspects of the study of this thesis. Furthermore, there are many setbacks of current
surveillance systems that motivate this study. One of them is the privacy concern about
storing individuals’ images without permission. Although we think that people who have
done nothing wrong should not be worried, most people who have been asked if video
surveillance systems are intruding their privacy, their answer is almost yes. Depending
on countries, the legislation on privacy protection might be different. In China, the pri-
vacy concern does not seems to be a big issue, even though the international community
has strongly criticized its national surveillance system as such a human right violation.
Meanwhile, in Europe, the EU data protection rules, as known as the EU General Data
Protection Regulation (or GDPR) [51], was adopted by the European Parliament in 2016
to increase the transparency of businesses in data collection and to protect the privacy of
EU citizens. In general, the new EU data protection rules aim to give people the right to
know if their personal data is collected and also the right to suspend any data collection to
them or request their personal data. This new EU regulation makes a significant impact on
video surveillance systems. Because most of these systems always collect images from cam-
eras and save them into a data storage center before that information being processed for
further tasks such as tracking, recognition, and re-identification. Hence, this law adds more
requirements to surveillance systems, and it means that data storage should be suspended.
That forces surveillance camera, systems to process video streams online.

With the rapid improvement of embedded systems in computational power and low
energy consumption in addition to low-cost cameras, the “intelligent cameras ”
cameras” are defined as the cameras which can process end-user tasks (e.g., detection,
tracking, analyzing) themselves without transferring the video streams back to computa-
tion center. Unlike the conventional centralized system, a surveillance camera system built
by smart cameras technically fulfills the aforementioned strict requirements on privacy. As
a distributed computing system, all raw information is processed locally by cameras them-
selves so that this sensitive information is not being transferred or spread into networks.
This means that no massive data centralized storing is required, and data are almost pro-
cessed online by each camera in the network. By computing data in a distributed way,
the smart camera system lowers the amount of necessary information transferring through
the network. Another convenience of this system is that cameras can work independently
or collaboratively within an unstable network connection such as wireless or mobile sig-
nals. Finally, with the capacity of operating on the existing I'T infrastructure, this camera
system is not required any additional network for the surveillance system (e.g., IP cam-
eras), it is then easy to set up with a lower installation cost. Therefore, a distributed and
collaborative camera network to detect and track objects is the main focus of this thesis.

or “smart
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Apart from security applications mentioned previously, videos from cameras are being
served for different purposes, such as scene understanding. As one of the most crucial tasks
in video processing, tracking algorithms are not only used to follow the trace of an individual
for qualitative analysis but also to determine the group tracking for quantitative analysis.
The tracking results, i.e., the trajectories of the objects of interest in videos are served
as a relevant feature for automatic deeper analyses such as classifying videos in videos
databases (e.g., YouTube, DailyMotion), indexing scenes in movies on online streaming
movies services (e.g., Netflix, Amazon Prime Video, Apple TV, Hulu) or monitoring traffic
at a busy street intersections.

In addition to these above applications in real world, object detection and tracking
with cameras are a hot research topic for autonomous driving technologies that could
apply in future applications such as robo-taxi service. In self-driving systems, besides
the autonomous navigation part that drives unmanned vehicles on their road lanes and
follow their given itinerary, driverless cars essentially require a complex object detection
and tracking system with multiple sensors including radio-signal sensors and visual sensors
(i.e., cameras) to detect immediately any obstacle on the road in any weather condition.
Driving on the road does not just mean to drive from one point to another point in the city,
the car has to collaborate with other vehicles which are, at the same time, participating
on the traffic. All vehicles have to follow the road safety rules such as recognizing road
signs, slowing down when approaching intersections or stopping at the red traffic lights.
Driverless cars have to behave on the road independently and exactly as being driven
by human. Human being uses eyes to observe other cars, pedestrians, road signs on the
street, meanwhile driverless vehicles use cameras to do the same things. Processing video
streams from cameras, the computer system on this type of vehicles is required to detect
other vehicles and people in real time in order to recognize any abnormal movement on the
road to avoid accidents as early as possible. As the safety of customers is the priority of
any driverless car maker, object detection and tracking is an ultimate crucial task, which
is also the main focus of the manufacturers in order to prevent road accidents. Being a
leader in self-driving car industries, Tesla was the first automaker to release the autopilot
system on its electric car (Tesla Model S) in 2014. Despite the constant improvement of the
autopilot system, there have been crashes on the experiments of this new autopilot system.
The first known fatal car crash occurred in Florida on a night of May 2016. According
to the conclusion from the local authorities, the camera system was malfunctioning while
it did not recognize the victim crossing the street. In another experiment, Tesla released
a video showing its self-driving car has successfully tracked the front car and detected
its abnormal slow-down and the incident ahead, then stopped the vehicle to prevent the
follow-up accident. Those examples demonstrated that a detection and tracking system
plays a crucial role in self-driving vehicles (Fig. [1.2).

As all the reasons mentioned above motivate this study, the main objective of this
thesis is to develop novel methods of object detection and tracking via a network of col-
laborative and distributed cameras. The next sections detail the context of this study, the
remaining challenges in the field, the prior hypotheses fixing our case study as well as our
contributions.
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Figure 1.2 — Detection and tracking in self-driving cars

1.2 Context of study

As part of the LUMINEUX project, this study is funded by the Région Centre, France.
The LUMINEUX project focuses on the energy efficiency of urban lighting and all the
following related overconsumption problems. The main goal of the LUMINEUX project is
to make urban and peri-urban lighting intelligent built from an embedded vision system
which can communicate between its units. This new system contributes to reducing the
costs of operating and protecting the environment by lowering energy consumption. The
goal of the project is to create an intelligent lighting system in cities based on the analysis of
the scene resulted from the vision system. Furthermore, this intelligent vision system aims
to detect and recognize abnormal, suspicious events in public place, e.g., road accidents,
crime scenes, traffic violations. As a result, this project will expectedly improve road safety,
as well as public safety in general.

As one of the most ongoing and trendy problems in computer vision, automatic video
understanding and interpretation involve detection, tracking and recognition of objects
of interest which is one of the main focuses of this study. The state-of-the-art method-
ologies for video understanding are developed within a powerful system using a single
camera. Meanwhile, with the rapid expansion of cheap camera networks, collaborative and
distributed methods for video understanding are becoming more and more interesting re-
search topic. Hence, we aim at developing efficient collaborative and distributed solutions
for network-based video understanding during this thesis. We are particularly interested
in the tracking problem and targeting at new robust algorithms which improve both track-
ing reliability on a single camera and overall understanding of the scene captured by the
camera network.

This research study entirely took place at the Laboratory of Fundamental and Applied
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Computer Science of Tours (french acronym: LIFAT) (EA 6300), L’école polytechnique de
Tours within the University of Tours, France.

1.3 Remaining challenges in object tracking

As mentioned previously, the goal of this study is to develop novel methods of object
detection and tracking within a distributed and collaborative camera network. Since the
last decade, there have been plenty of works on object detection and tracking by cameras
for surveillance purposes. However, this research topic is still having challenging problems.

First of all, to perform tracking tasks, the camera system has to detect objects of interest
at the first place when they enter the scene. In the literature on object detection or generic
object detection, there are many problems such as: building a consistent pattern for a
specific object; dealing with various shapes and textures of objects, tackling the variation
of one single object in size, scale and pose, the problems from objects themselves; and other
issues caused by environmental factors include camouflage (i.e., when the texture/color of
the background is quite similar to objects); bad lighting condition (e.g., detecting object
in the dark); or the error from recording devices (e.g., image distortion caused by camera
lenses, noise generated from image sensors).

In this thesis, we are particularly interested in vehicles and pedestrians for public
surveillance purposes. For street vehicles such as cars, trucks, the 3D appearance of them
are consistent and unchanged, but when being recorded in 2D images, their poses, which is
depending on the camera’s angle and position, are directly impacting on its 2D appearance.
Meanwhile, people change their shape when moving. Furthermore, individuals’ physical
appearance highly depends on their height, body, and clothing as well. Because of the
various surveillance systems, human poses can be a difficult issue. For example, the camera
surveillance systems on public transports such as buses, trains, metros usually have the
top view in which the cameras mainly observe the heads of passengers.

One of the main factors impacting on the tracking performance of camera surveillance
systems is the constant environmental changes. Unlike the indoor camera system, the
camera surveillance systems in public places are deeply affected by the background scene
changes. These changes can be the change of lighting during day and night or caused by
weather (e.g., sunny or cloudy days) or the shadow of objects such as buildings, trees,
advertising billboards, or the lawn color changes (for example from green to yellow), tree
branches moving with winds. In outdoor cases, the color of targets is usually changed
by lighting conditions, for example, an individual walking out from the shade of a tree.
However, these environmental factors do not seem affecting detectors, but challenging the
re-identification task later, because of the color change on targets.

Another critical problem in detection and tracking is occlusion. In surveillance videos,
targets are frequently hidden or covered by obstacles or other targets, especially in com-
plex or crowded scenes. Occlusion can be partial or total, and the hidden time of targets
is unknown. Straightforwardly, occlusions make detection and tracking tasks extremely
challenging and sometimes impossible (e.g., total occlusions). Many methods try connect-
ing two instances of targets (i.e., the moments in which targets disappear and reappear
during the occlusion period) based on general movement patterns such as velocity, recorded
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paths. Using movement patterns to interpret missing paths of individuals is practical in
specific surveillance scenes, such as train stations, airports, where the flow of people gen-
erally moves from entries to exits. Although applying these types of motion patterns can
possibly improve tracking scores in terms of quantity, it seems neglectful with abnormal
and unprecedented movements, which are usually seen in criminal activities, for example,
a suspect does not move toward any specific destination point. Apparently, these patterns
introduce a path model to adapt to maximum people (i.e., inliers) but ignore the small
portion whom the security service particularly wants to monitor (i.e., outliers). As the
above explications, occlusion problems inevitably cannot be solved in implicit ways, so it
remains a challenging problem in detection and tracking.

The follow-up challenge when resolving occlusion problems is how to manage to track
multiple targets simultaneously. As individuals usually disappear and reappear multiple
times through the entire surveillance video, in order to track those individuals, online
tracking algorithms have to relink their appearances every time they reappear on the scene.
Therefore, in the online tracking scenario where we counsistently and continuously track
targets, tracking algorithms are required to pause and resume multiple times corresponding
to occlusions. Otherwise, if online tracking is not a requirement, tracking tasks relates to
re-identification closely.

The last issue related directly to practical implementations on intelligent cameras is
the processing time. For every embedded system, processing tasks must be done within
the real-time constraint that is the priority. As we often see in many tracking methods, the
accuracy of tracking algorithms is being traded off with their complexity. However, this
thesis does not try to cover this issue. In the next section, we clarify all the hypotheses
and constraints for our detection and tracking problem with multiple cameras.

1.4 Hypotheses and constraints

Developing intelligent multi-camera video surveillance systems is a multidisciplinary
field related to computer vision, pattern recognition, signal processing, communication,
embedded computing, and image sensors [194]. Figure illustrates the involved disci-
plines for smart camera networks. Generic multiple object tracking in multiple views for
smart camera system is a large and complex problem. Therefore, the more constraints are
imposed, the more feasible tracking tasks are.

In this thesis, we mainly focus on the computer vision domain and all related distributed
algorithms; hence, we explicitly detail below the list of hypotheses and constraints which
define our case study:

e Camera calibration, also referred to as camera resectioning, is a process of esti-
mating the parameters of a pinhole camera that produces images or videos. These
camera parameters are used to correct lens distortion, which are seen captured im-
ages, determine image point location in world coordinates, measure the size of the
object, or find the camera’s position. In general, camera calibration is a task of find-
ing a mathematic model that links the 3-dimensional location of the points of interest
in real-world to 2-dimensional image coordinates corresponding to those points. In
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Sensor networks
e Wireless communication
e Networking

Image sensors
¢ Rich information
* Low power, low cost

Smart Camera
Networks

Signal processing
¢ Embedded computing
¢ Collaborative methods

Computer vision
 Object detection
e Scene understanding

Figure 1.3 — Convergence of disciplines for smart camera networks: image sensors, sensor
networks, signal processing for embedded computing, and computer vision [194].

the context of multiple cameras that we are working on, calibrating those cameras is
an essential step before making them share their tracking results. In the literature
on camera calibration, there are many baseline methods such as Direct linear trans-
formation method, Tsai’s method [206], Zhang’s method [245]. However, seeing that
camera calibration is also one of the main topics in computer vision, this study does
not address the camera calibration problem. Therefore, we assume that all calibra-
tion information are available to determine the real-world 3D position of every point
on the image plane, and vice versa, the 2D image position of every point on the real
world.

e Camera synchronization is a process of synchronizing the time of capturing images
from different cameras. Many computer vision applications require to capture a scene
from different points of view, and with a dynamic scene like tracking videos in this
study, every frame from cameras needs to be taken at the same time. Synchronizing
camera networks involves many synchronizing steps from image-capturing time to
the latency of the network. To simplify our case study, we suppose that all cameras
are perfectly synchronized.

e Static camera is the subject of our study where cameras are fixed at specific
locations to film the surveillance areas. In practice, the dynamic cameras (e.g.,
pan—tilt—zoom (PTZ) camera) are also commonly used in surveillance, and those
dynamic cameras involve many other research disciplines such as robotics, control,
automation. However, in order to limit our research area and focus on one field, we
only consider the static cameras in this study.

e Overlapping-view cameras is one of main constraints in our study. As mentioned
before, the occlusion problem is still an unanswered question in tracking objects
within a single camera. Using multiple cameras observing the same scene but from
different angles and positions can technically resolve this issue because when a target
is being occluded in one view, it is possibly observable in other views.
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e Unlimited computing capacity is the hypothesis supposed on each distributed
camera what we are working on.

e Online tracking and distributed algorithmn are our two last constraints. As one
of the reasons mentioned above, there is no data storage center required to record all
surveillance videos; we are, hence, interested in creating distributed tracking camera
systems. This means that all tracking tasks have to be processed online on cameras
themselves before collaborating with other cameras in the network.

1.5 Contributions

In this section, we briefly summarize our contribution of this thesis.

e QOur first contribution is a robust multi-camera tracking framework for the sparse
tracking single view methods by extending the particle filter on a common tracking
ground-plane to adapt the multi-view tracking context. The multiple cameras frame-
work allows detecting local appearance variation in a single view and the tracking
task switching between cameras in the network. The research result is published
in the conference Reconnaissance des Formes, Image, Apprentissage et Perception
(RFIAP) 2018, Paris, France.

e We adapt an MDP Multiple Object Tracking framework to a multiple overlapping,
calibrated, and frame-synchronized camera setting. The problem of associating tar-
gets across cameras is modeled, in each frame, by a graph-based approach for which
we propose a fast approximate solution. We further exploit multiple views to deal
with occlusions and to recover targets’ identities, thus to improve the overall iden-
tity score. Another essential aspect that we address concerns with the affinity score
used in the association step. We propose a robust similarity function consisting of
a “trajectory” affinity and a given appearance affinity function that are used to link
targets in different views. This research result is published in the Vision for Interac-
tion and Behaviour undErstanding (VIBE) workshop of the British Machine Vision
Conference (BMVC) 2018, Newcastle Upon Type, UK.

e We review several appearance similarities in the state-of-the-art propose a method to
combine these appearance features with trajectories as a robust similarity measure
for target association across views and finally conduct an exhaustive analysis on the
impact of these functions on final results. This research result is presented in the
conference ACM/SIGAPP Symposium On Applied Computing 2020, Brno, Czech
Republic.

e As another major contribution to the target association problem between different
views within an overlapping camera system for online MTMC tracking applications,
we reformulate the association problem between two cameras as an Optimal Trans-
port (OT) problem. In order to deal with the potentially varying number of targets,
we leverage recent advances in the wunbalanced formulation of Optimal Transport.
Furthermore, we propose to learn the ground cost used in the OT formulation. This
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learning aims at devising a ground cost that yields the optimal association accuracy.
It leads to a learning algorithm that evaluates the gradient of the loss function by
automatic differentiations through the iterates of an OT solver. We finally adapt
the target association framework between two cameras to the context of multiple
cameras. This work is presented in a workshop of the 25th International Conference
on Pattern Recognition (ICPR), Milan, Italy.

1.6 Plan of thesis

In this section, we present our thesis plan. Indeed, this thesis is generally divided into
six chapters: introduction, state-of-the-arts approaches, sparse coding for collaborative
tracking mono-object in multi-view, multiple object tracking: target association across
multiple cameras, and finally conclusions and perspectives.

e The first chapter, i.e., this chapter, states the motivation of object tracking research
and its real-life applications. We mention the context of this thesis, then remind the
remaining challenges in visual object tracking. Next, we declare all hypotheses and
constraints that we use to conduct this study and briefly list our main contributions.
The final part is the outline of the document to show the structure of this dissertation.

e Chapter 2 includes state-of-the-art approaches that are carefully separated into five
parts corresponding to the main steps in the tracking process. The first part cov-
ers generic object detection methods, which include the classic approaches and the
modern approaches based on deep learning techniques with the image datasets. The
second part is a brief literature on appearance feature extraction for object tracking.
The third part reviews the single object tracking methods in the state-of-the-arts
consisting of the classic approaches from the ’90s until 2008, the methods using
sparse coding for appearance modeling, those benefiting the computing speed from
correlation filters and the approaches based on deep learning with the introduction of
Siamese networks. The forth and fifth parts present the literature on tracking multiple
objects in a single view and multiple views based on either Single Object Tracking
methods or Tracking-by-Detection approaches. Finally, the last part presents the
benchmarks and performance measures, which are commonly used in the multiple
object tracking community.

e Chapter 3 details our contributions to a mono-object sparse coding tracking method
based on particle filters for a collaborative and distributed camera network. Our
framework for multiple cameras applies the particle filtering strategy for target search-
ing, which is a common tool in Single Object Tracking methods in the literature. Our
framework introduces a novel way to detect occlusion events based on sparse cod-
ing for further camera collaboration. The tracking results are transferred back and
forth between pairs of cameras in the distributed camera network to continuously
track their target even with occlusion events happening in some views. The tracking
results are compared with the state-of-the-art single view approaches.

e Chapter 4 presents in detail our second contribution, which is an online robust multi-
view tracking method for a collaborative and distributed camera network. The chap-
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ter is divided into three sections. The first section describes our multiple camera
multiple object tracking framework, which supports Single Object Tracking methods
to implement to track many targets in the context of multi-view tracking simultane-
ously. The second section details our data association method to associate targets
across cameras based on the appearance and trajectory of targets. Along with tra-
jectories, many appearance features used to measure the similarity between targets
across views are studied. Numerous experiments on different configurations with
different similarity measures are carried out in comparison with the original single-
view approach. The tracking results are validated on the common videos multi-view
databases with the standard performance scores, including MOT and ID-measure
scores. The third section begins with the problem of combining multiple features to
differentiate targets across different cameras. Addressing this problem, we propose
the second target association method for pairs of cameras by reformulating it as an
Unbalanced Optimal Transport problem. This approach considers associating targets
in one view to those in another as finding an optimal transport plan which transports
an empirical distribution to another one with a minimum transport cost. The trans-
port ground cost is deduced from a distance between two distributions. We use a
deep neural network to encode the trajectory and appearance of targets for learning
the metric distance in the OT problem. The novel target association method is well
adapted to our multi-camera tracking framework. The experiments are conducted on
standard benchmarks to compare the performance of both data association methods.

Chapter 5 concludes the thesis, discusses the remaining challenges in multi-view
multi-target tracking, develops the other perspectives on this tracking problem with
new initiatives to tackle problems, finally talks about the current and future appli-
cations in the real world.
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Chapter 2

State of the Art

2.1 Object detection

Object detection is one of the fundamental problems in computer vision. Its applica-
tions widely range from simple tasks such as recognizing and identifying objects to more
complex tasks such as tracking mobile objects in autonomous driving or surveillance track-
ing. The goal of object detection is, given categories, e.g., human, car, pets, to determine
whether or not they are in an image and their positions.

2.1.1 Classic methods and image datasets

The history of object detection can be divided into two periods: The first classic ap-
proaches from 1999 until 2012, and the machine learning techniques since 2012. The most
preliminary challenge in computer vision is to detect objects in images. The object detec-
tion research achieved a milestone when Lowe [149] released the Scale Invariant Feature
Transform method (SIFT) in 1999, which can find identical objects with the corresponding
matches to a given one. This method gives remarkable robustness concerning translation,
rotation, illumination, and viewpoint. However, the problem remaining is to match the
objects belonging to the same category but not identical, e.g., grouping image of cups
which are taken from different cups.

The Lowe’s method [149] inspired the object detection community with his invariant
keypoints resisting the changes in scale, rotation, viewpoint, and illumination, then the
detection trend shifted from finding global appearance features (e.g., shapes, structures,
color) to focusing on local descriptors. Since then, finding handcrafted local invariant
descriptors had become a popular trend. These local descriptors include Haar features [211],
SIFT [148], Histogram of Gradients HOG [55] and Local Binary Pattern (LBP) [164]. After
obtaining these features, they are usually concatenated into a vector or transformed into a
latent space, such as Bag of Words [I31], Deformable Part Model [77], where they can be
classified by a supervised method, e.g., Support Vector Machine (SVM) [49]. In 2011, as a
remarkable contribution to object localization, the selective search for object recognition
by Van de Sande et al. [207] had a strong influence on the later methods. Although
object detection algorithms have addressed the searching object problem with noticeable
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results, it remained a question: Can computers detect objects in an image without knowing
what is inside? The object detection challenge has become much harder since we required a
complete automated object recognition process. This task is called generic object detection.
Given a large number of images, the challenge of object detection is to determine what is
inside and where it is. The following subsection is about deep learning approaches that
answered the above question.

Additionally, during this period, PASCAL Visual Object Classes (well-known as PAS-
CAL VOC [74]) was released in 2007 to contribute a large dataset and a fair comparison
for all state-of-the-art methods. A couple of years later, Wang et al. [67] also published
the first large-scale image dataset in 2009. These enormous image datasets are the prior
elements for the advancements of deep learning techniques in the following decades.

2.1.2 Deep learning methods

Machine learning techniques have been developed in the 1990s with few applications
due to the limitation of computational power and data. One of the most relevant ap-
plications in vision is the digit recognition algorithm with the MNIST handwritten digit
database and the birth of Convolutional Neural Network (CNN) by LeCun et al. [I35] in
1998. Since then, there were very few machine learning approaches addressing computer
vision problems until 2012 when Krizhevsky et al. [127] released their method with their
GPU implementation. They built a neural network structure using multiple convolutional
blocks, trained the entire neural network on GPU, and gave a breaking performance on
imageNet [67]. By taking advantage of the parallel computational power on GPU, the im-
plementation was able to train a bigger CNN structure from a massive training data in a
reasonable time. Since AlexNet [127] was the board leader of ImageNet Challenge in 2012,
deep learning techniques received lots of attention from the community, and it has emerged
as a promising method for a powerful feature representation with an end-to-end learning
approach. Its accuracy crucially relies on the volume of training dataset and the depth
of the neural network [99]. Because of the availability of large scale image datasets such
as ImageNet[67], PASCAL VOC|74], MS COCO|143], the accuracy of deep learning ob-
ject detection algorithms dramatically increased and overpassed human performance [145].
According to the neural network architectures, the state-of-the-art deep learning object de-
tection methods can be separated into two categories [145]: two-stage detection approaches
and one-stage detection approaches.

2.1.2.1 Two-stage methods

The main idea of this type of method is to pre-process images to propose the Region
of Interest (Rol) and then recognize the object from wrapped image patches extracted
from the Rol. Indeed, the pre-processing step primarily aims to localize objects, and then
the main detection step labels these given regions by a specific classifier. Following this
detection scheme, Girshick et al. [88] proposed the Region-based Convolutional Neural
Network (RCNN) consisting of one region proposal step via Selective Search [207] and one
neural network to label each region proposals. Notice that the Neural Network includes:
the convolutional blocks serving as a feature extractor and a single/multi-class classifier
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such as C-SVM. Image patches used as an input of the CNN are cropped from proposal
regions and rescaled to have the same size. CNN models are pretrained using multiple
image datasets such as ImageNet [67], PASCAL VOC[74] or MS COCO|[143].

Observing an inconvenience that the RCNN [88] only accepts an unique-size image
input while the CNN block can get the arbitrary size, He et al. [98] inserted an SPP
(Spatial Pyramid Pooling) layer, which aims to obtain fixed-length features, between the
CNN block and the Fully Connected (FC) layers. The most significant disadvantage of
these above methods is that detecting multiple objects in a single image means we need to
feed the network multiple times. Repeating this process slows down the algorithm, and it is
not an effective way to detect many objects, because in most cases, the objects are usually
superimposed on each other, and theROIs share the same regions. In 2015, Girshick [87]
introduced the Fast RCNN, which applies the Selective Search at the last CNN layer to
extract features of Rol, called feature map, before entering to the FC layers. This manner
helps the algorithm benefit from the sharing computation of convolution since the input
of Fast RCNN is an arbitrary-size image comparing with multiple extracted regions in the
older version RCNN [88]. Meanwhile, instead of using the Selective Search [207] to obtain
Rol, the Faster RCNN proposed by Ren et al. [I76] uses a Regional Proposal Network
(RPN) which takes the feature map as the inputs (i.e., the output of the last CNN layer)
for each spatial location, e.g., objectness classification, bounding box regressor. The RPN
helps the network run faster in terms of magnitude [I76] and retain sufficient geometric
information for accurate object detection [136] as well.

Inspired by Fully Convolutional Network (FCN) for semantic segmentation [147], Dai
et al. [54] introduced the Region-based Fully Convolutional Network (RFCN), which helps
to minimize the amount of computation that cannot be shared. Indeed, the FC layers in
classification are pinned to the head of the feature maps and convolutionalized [147] to
be able to accept more than a fixed-size image input, then the feature maps go through
these FC layers to generate position-sensitive score maps. Finally, each Rol extracted from
these maps gets through a multi-class classifier for the type of object and a Bounding Box
regressor for the final localization. Some extensions of RCNN such as Mask RCNN [97],
Light Head RCNN [142] significantly improved the speed and accuracy of RCNN for object
detection. Recently, to improve the accuracy of bounding box localization, Jiang et al. [113]
proposed IoU-Net as an alternative optimization-based bounding box refinement for other
deep object detection methods. Figures[2.1|summarizes the development of two-stage deep
learning methods of object detection.

2.1.2.2 One-stage methods

Unlike the region-based (or two-stage) strategy, this approach uses one CNN architec-
ture to localize objects’ positions via a bounding box offset and predict class probabilities
without any additional (region proposal) searching step. This setting only needs a single
feed forward CNN network to obtain results directly. Therefore, this elegant and straight-
forward end-to-end detection pipeline can be directly optimized on detection performance
during the training phase. The very first work implementing this idea is the DetectorNet
by Szegedy et al. [197] in 2013. In detail, their idea to localize objects on an image is to
quantize input image into multiple cells of a fixed-size grid, called coarse grid, and then
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determine which cells contain objects, i.e., foreground and which does not, i.e., background.
They used AlexNet [127] with a regressor on the top of the prediction masks, which are, by
definition, the cells that mostly overlap with the bounding boxes of objects. Accordingly,
these masks are fed to a series of CNNs to obtain the object’s bounding box. The disad-
vantage of this method is that this procedure repeats multiple times at different scales to
detect objects of different sizes. Meanwhile, Sermannet et al. [I88] proposed OverFeat with
a deep convolution network performing object detection in a multi-scale window sliding.
Practically, in the training phase, the CNN is applied on an image patch and produces
one single output, while in the testing phase, applying on a larger image results in a fea-
ture map. They naturally share computation between one-pixel sliding windows. As the
output of the classifier, the feature map, which indicates on each pixel a class and its con-
fidence score, enters into a regression network to predict the bounding box. This method
is advantageous in terms of speed, but trades off accuracy compared with RCNN [8§].

Having a similar idea of DetectorNet [197] to localize objects on the coarse grid of the
input image, Redmon et al. [I73] introduced YOLO (You Only Look Once) which is a
simpler model. YOLO possesses a novel CNN structure that unifies object classification
and bounding box regression within a single architecture. The method directly predicts
objects from candidate regions or grid cells, which is actually equivalent to the marks in
the DetectorNet paper [197]. In detail, YOLO divides input images into a S x S grid,
each cell predicts only one object via a fixed number of different shape bounding boxes
containing box location {x-offset, y-offset, width, height}, B boz confidence scores and C
conditional class probabilites. Hence, YOLO’s output has a shape (S, S, B x 5+ C). Unlike
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OverFeat [188], the searching space of YOLO is greatly smaller, explicitly S x S x B x 5.
Eliminating region proposal step and having a limited space search, YOLO can run very
fast and exceed far the real-time requirement. As a setback of this method, the accuracy of
YOLO is relatively low, it sometimes fails because objects are too small or there are so many
of them due to the fixed-size grid. Later, Redmon and Farhadi [I74] released YOLOv2,
which achieved state-of-the-art performance with 9000 object categories (YOLO9000) while
still running in real-time. The illustration of YOLO approach is shown in Figure 2.3]

YOLO

Figure 2.3 — Illustration of YOLO detection object approach [197].

Following the single-stage detection scheme, Liu et al. [I46] introduced Single Shot
Detector (SSD), which efficiently combines the idea of RPN (Regional Proposal Network)
from Faster RCNN and cascaded CNN blocks to obtain multi-scale feature maps. Indeed,
the SDD consists of a common feature extracting CNN network, such as VGG [193] followed
by a series of CNN networks. Accordingly, the feature map from VGG goes through many
multi-scale cascading CNN blocks. After going through each CNN block, the feature maps
gradually decreases in size and detail of information. Thus, the first CNN blocks detect
small objects, while others detect for the larger ones. In practice, SDD has comparable
accuracy with the state-of-the-art detectors such as RCNN [88] or Faster RCNN [I76],
while having a higher speed in comparison with YOLO [I73|. Figure summarizes the
one-stage deep learning approaches in object detection.
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Figure 2.4 — The challenges while observing a target from different views: the width-height
ratio of a standard bounding box is fixed while this ratio can be changed in a different view
like from high altitude; the lighting condition effecting to the color pattern inside bounding
box of target [40].

2.2 Appearance feature extraction for object tracking

In pattern recognition, extracting feature is a crucial step, which aims to measure
the similarity or dissimilarity between known things especially in object detection, object
tracking or re-identification. As mentioned in the previous section, object detectors use
appearance features to classify an object into known categories. For object tracking task or
human re-identification task with multiple objects belonging to same categories, appearance
feature is used to discriminate an object instance from other objects in the same class.
Within most surveillance applications, people and vehicles are the two main targets. There
are several significant challenges to identify these targets among multiple detections. The
first challenge is to deal with the mix of targets and the background, due to the rectangular
shape of detections, i.e., bounding boxes. For the detections of vehicles, the rectangular
shape well adapts to the car shape, the background zone inside of the box is relatively
minor and negligible, but it is not well-shaped to adapt articulating objects like human
body.

In this section, we mainly focus on the most common appearance features used to track
people in the literature. Firstly, as many detectors do not release well-cropped bounding
boxes, which might contain the background rather than its target, in reality, around 50%
to 60% its surface is the background, the remaining is the body parts. Secondly, a single
target can have many different poses, e.g., the front, behind, side, or even top. Lastly, the
lighting condition has a huge impact on the appearance consistency of targets, especially
color. This is caused by either weather conditions or different color sensors of different
cameras. The illustration of these challenges is depicted in Figure

The appearance of a human can be described by various patterns, but the most common
one is color that is widely used in many papers (Cai and Medioni [34], Chen et al. [39} [41],
40], Das et al. [62], Gilbert and Bowden [86], Javed et al. [I10], Jiuging and Li [214], Kuo
et al. [129], Zhang et al. [239 240]). The color features can take many forms, but the most
useful and simplest one is the color histogram with different color models such as RGB (Red,
Green, Blue), CMYK (Cyan, Magenta, Yellow, Black), HSL (Hue, Saturation, Lightness)
and HSV (Hue, Saturation, Value). The texture of targets is also a good indicator (Cai
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Figure 2.5 — Human body being encoded separately into two main parts: torso and legs [40]

and Medioni [34]; Chen et al. [40]; Daliyot and Netanyahu [56]; Kuo et al. [129]; Zhang et
al. [239, 240]).

Lighting variations or illumination changes are mitigated by enhancing the color his-
togram with normalization (Cai and Medioni [34]), using exemplar-based approaches (Chen
et al. [40]), or Brightness Transfer Functions (BTF) learned with (Das et al. [62], Javed
et al. [I10]) or without supervision (Chen et al. [39], Gilbert and Bowden [86], Zhang et
al. [239, 240]). The histogram of oriented gradients (HOG) [55], which can resist to lighting
variations, is also a common features to extract the appearance of objects.

Furthermore, to improve the appearance model, human parts can be encoded separately,
such as torso versus legs (see in Figure . Meanwhile, in the aspect of a non-rigid object
type, moving people have their limbs gradually articulating around their main body parts
through successive frames, Deformable Part Model (DPM) introduced by Felzenszwalb et
al. [77] are commonly used to model human body in tracking videos. There are also other
attempts to combine both human body detector with facial detectors [37, [103]. Proposing a
generic object descriptor, Choi [45] introduced Near-Online Multi-target Tracking (NOMT)
approach with the Aggregated Local Flow Descriptor (ALFD) that aggregates multiple
local Interest Point Trajectories (IPTs) which, by definition, are the matching points found
by local interest point detectors between two detections via optical flow algorithms [2§].
The author also presented a hierarchical affinity measures based on IPTs between two
detections. By incorporating the ALFD with a motion/appearance model, the tracker has
the ability to run in real-time with high accuracy. However, the tracking results are delayed
a certain frames due to the Multiple Hypotheses Tracking (MHT) process, which is used
to determine the best hypotheses (trajectories).

Besides the hand-crafted appearance features, many papers |75 [154] 155 182, 243
deployed sparse coding techniques for target’s appearance representation. Mei et al. [154]
first introduced spare coding for appearance representation in vehicle tracking. There are
many works [155, 241, 144, [112], 12, 250}, 217, [182] 243| 233, 215, 242], 238] following up to
enchance the ability to represent targets’ appearance changes in videos. Extending spare
coding in multiple tracking object cases, Fagot-Bouquet et al. [75] proposed a formula-
tion of the multi-frame data association step as an energy minimization problem with an
optimization energy that efficiently exploits sparse representations of all detections.
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The enhancement of appearance models is also achieved by reinforcing the discrimina-
tiveness of the selected features. Martinel et al. [I52] proposed using saliency information.
Zhao et al. [246], Cai and Medioni [34], Chen et al. [40], Daliyot and Netanyahu [56], Das
et al. [62], Jiuging and Li [214], Kuo et al. [I129] learn specific features on body parts or in
the image such as Bedagkar-Gala and Shah [I7, [I8], Cheng et al. [43] Meanwhile, several
papers encode the appearance features on an articulated (Baltieri et al. [9], Cheng and
Cristani [42]) or monolithic (Baltieri et al. [10]) 3D body model. Long Short-Term Mem-
ory (LSTM) combining with the extracted features from CNN by Sadeghian et al. [184] is
used to adapt the evolving body parts while discriminating the background during videos.

The appearance features have been studied intensively in the re-identification com-
munity. They focus on how to distinguish different people in a collection of detections.
The recent literature in person re-identification relies mainly on deep learning techniques,
which has been showing their simplicity and high performance in visual representation this
decade.

2.3 Single-object tracking
Visual object tracking is one of the long-standing research fields in computer vision.
Primarily, tracking a single object is the most fundamental task in visual tracking. There-

fore, in this section, we discuss the classic and modern single object tracking methods of
the state-of-the-art. The history of the development of single object trackers is depicted in

Figure 20
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Figure 2.6 — Development of Single Object Tracking methods. There are four main ap-
proaches in Single Object Tracking: classic (orange), sparse-coding based (blue), correlation
filter (green), and deep learning (violet) approaches.

2.3.1 Classic methods

Most visual object tracking approaches are generally presented in multiple steps, which
are shown in Figure .71 The scheme of visual object tracking approaches consists of
finding suitable appearance representations for objects of interest, searching targets in the
successive images, estimating object’s positions, and updating appearance models.

A variety of object modeling approaches have been proposed due to different types of
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Figure 2.7 — General scheme of Single Object Tracking approach

objects, which are mainly divided into two classes: rigid and non-rigid (or articulated) ob-
jects. Rigid-body objects generally do not have any deformation during their movements,
concisely, their shapes remain unchanged while moving, but their visual appearance can
change in different points of views. In practice, tracking applications are interested in
rigid-body objects like vehicles such as cars, airplanes, boats. On the contrary, articulated
objects are more complex and harder for modeling as their sub-body parts move around
their main body during movements. This causes their appearance to change frequently in
video sequences. In a survey of Yilmaz et al. [234], the classic object representation includes
keypoints, centroid, skeleton model, bounding box, object contour, and object silhouette.
Keypoints, centroid, and primitive shapes, polygons are commonly deployed to track rigid
objects which have a particular shape or texture. Meanwhile, object contour, silhouette,
and skeleton are used for non-rigid objects such as pedestrians, animals. Object represen-
tation is described via appearance extracted from the bounding box. These appearance
representations consist of: appearance features, e.g., color, textures, templates, e.g., image
patches of the objects, active appearance models, e.g., landmarks on the boundary and
inside objects, multi-view appearance models which can encode object’s appearance from
different views. In most of the state-of-the-art approaches, bounding box is the simplest
and most commonly used among these above object models. Due to the popularity of the
bounding box in tracking, the appearance model of object tracking is usually replaced by
the term “appearance features”, which are the visual features extracted inside the bounding
box containing the object. Indeed, appearance features intensify the uniqueness of objects
through the whole video.

Initially, in classic tracking approaches [234], several common features are deployed
such as color which is decomposed into three channels RGB in image processing, or some-
times HSV (Hue, Saturation, Value); optical flow which is a dense displacement field of
keypoints which depicts the motion of the objects (e.g., Lucas and Kanade (LK) [150]);
texture which is the visual variation on the surface of the object. However, the LK approach
does not consider the entire appearance of targets, which leads to the poor performance
of those trackers. In practice, objects’ appearance frequently changes during the tracking
process, specifically in the case of non-rigid objects, due to the change of camera’s POV,
or the illumination on the scene and so on. Multiple learning-based methods have been
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proposed to adapt to the object’s appearance variations efficiently. In the paper of Ross et
al. [I81], the appearance of objects is represented by a low-dimensional subspace, and this
representation is incrementally updated every frame. This method showed its capacity to
adapt to the variation of the target’s appearance, but its drawback is that its intensive
updating causes the drift problem, which is observed when the appearance templates drift
out of the target after a long enough tracking time [I53]. Since updated image patches
might contain tiny translation errors, these errors are accumulated through a time pe-
riod and become significant finally. To cope with this issue, Grabner et al. [90] proposed
a discriminative approach (OAB-Online AdaBoost tracker), which formulates the initial
tracking problem as a classification problem. A set of candidates is sampled around the
target’s position obtained from the last frame. Then they are divided into two groups:
positive samples and negative samples. The classifiers are learned to distinguish the target
(positive samples) from the background (negative samples). However, this method cannot
help the tracker altogether avoid updating the templates obtained from inaccurate tracking
results. To address the drift problem, Grabner et al. [91] introduced the semi-supervised
boosting method, which combines a given prior and an online classifier. In the Multiple
Instance Learning (MIL) method by Babenko et al. [7], ambiguous positive and negative
samples are put into two bags (i.e., bag-of-word) to learn a discriminative classifier. The
intuition behind is that the positive samples are generated relatively close to the target’s
center, while the negative ones are barred from the center with a fixed distance. This
keeps the tracker from updating the samples, which are too close to the barrier of negative
samples. Zhong et al. [250] used this type of discriminative classifiers and combined it with
a generative model. A common point of all these algorithms is to provide an appearance
model that has both the discriminative ability and robustness; however, balancing between
those goals seems problematic.

In terms of localizing objects, object detection also aims to find the location of the
object of interest in images, but the searching mechanism makes tracking algorithms dif-
ferent. Tracking algorithms would rather search its target in the Region of Interest (Rol)
based on its last position than scanning on the entire image. According to the survey of
Yilmaz et al. [234], object tracking methods or search methods are divided into 3 categories:
point tracking, Kernel tracking and silhouette tracking. The first catergory is separated
into deterministic methods [210] [I86] and statical methods such as Kalman filter [30],
Joint Probalistic Data Association Filter (JPDAF) [14, 172], particle filter [109]. Having
seen the particle filter as the most common technique in many Single Object Tracking
approaches, as well as ours, we will detail this technique in Sec. In kernel tracking
approaches, there are several relevant papers based on appearance models, e.g. Mean-
shift [48], KLT [190], Eigentracking [25]. Recently, many trackers have risen by applying
dense searching approaches while resulting in impressive performance such as correlation
filter trackers [26, [102], which will be discussed in the next section.

Besides designing a good appearance model, another efficient way to handle appearance
variation is to update the appearance model frequently. Initially, the update mechanism is
developed to combine the reference template of the target at the beginning of the tracking
process with the most recent tracking results [153]. Since then, there have been other
different update approaches depending on the appearance model of trackers such as online
boosting [90], online mixture model [I11], and incremental subspace update [I8I]. With the
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discriminative model, such as [7,95], the trackers update the appearance model by training
an online classifier as supervised learning every frame. Meanwhile, the methods in [91], 115]
reformulated the online supervised classifier update as semi-unsupervised learning.

In terms of object detection at the first frame, this step is called "Initialization" (or "re-
initialization" for reestablishing the tracking process when failing). This task can be done
manually or automatically. Regarding to the automatic mode, moving object detection can
be addressed by generic object detection which has been described in the previous section.
In the case of the invariant and simple scene, objects can be extracted by background
subtraction approaches [81], segmentation approaches [32], 158] or SVM, e.g. Adaboost
framework by Viola et al. [212]. There was an exhautive survey on the Single Object
Tracking methods conducted by Wu et al. [228] in 2013. In the next section, we detail an
efficient approach to represent the appearance of objects via sparse representation.

2.3.2 Sparse coding based methods

Sparse coding has shown its efficiency in visual representation [72] and attracted at-
tention from the computer vision community. In this section, we discuss the sparse coding
techniques used in computer vision, especially visual tracking. In principle, sparse coding
is a method of signal representation. A signal can be represented as a linear combination
of a large number of different signals with the same dimension, which form a redundant
matrix. Since the number of columns is much higher than row’s, the linear combination of
the basic signals in the redundant matrix representing the original signal can be presented
by an infinity number of coefficient vectors, i.e., the underdetermined system. With refer-
ence to sparse coding, only the coefficient vector, which has the least non-zero elements,
is considered as the solution, the original signal now is being represented by a few sig-
nals in the redundant matrix. For applications, sparse coding is commonly used in image
processing [I51], such as denoising, deblurring, resolution increasing. In computer vision
applications, the first remarkable work using sparse coding is the facial recognition algo-
rithm by Wright et al. [226] 225]. Since then, the method has been increasing its influence
on many applications of computer vision, including visual tracking.

According to the survey conducted by Zhang et al. [238] in 2013, sparse-coding-based
tracking algorithms have two major contributions: first, Appearance Modeling based on
Sparse Coding (AMSC) and secondly, Target Searching based on Sparse Representation
(TSSR). In visual tracking, the appearance model of a target is represented by image
patches, which are stored in a redundant matrix, called dictionary. Only a subset of
those image patches are selected to encode the most dominant features of the target. On
the other hand, Target Searching based on Sparse Representation intends to find the best
coeflicients to represent the given candidates in a dictionary. The pioneer works using
sparse representations in visual tracking have been introduced within the particle filter
framework [70] by Mei et al. [I54] [I55] and Zhang et al. [241]. Each candidate is represented
as a sparse linear combination of target and trivial templates. This set of templates, i.e.,
dictionary, is updated regularly in order to maintain an up-to-date appearance model. The
role of the trivial templates is to account for possible object occlusions (see Figure .
The representation coefficients for each candidate are obtained by solving an ¢;-penalized
least squares minimization problem.
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Figure 2.8 — Sparse representation with target and trivial templates handling occlu-
sion [155].

Inspired by the method in [I54], there were many papers improving the robustness
of the approach and reducing the computational cost. Liu et al. [144] introduced a two-
stage sparse coding to jointly minimize the target reconstruction error and magnify the
discriminative ability. Mei et al. [156] proposed a modified particle filter framework that
removes insignificant samples before encoding the whole samples in the dictionary. Bao et
al. [I2] introduced a minimization model in which the method combines a ¢;-norm and a
ly-norm to improve accuracy, and used a fast solver FISTA [16] that allows the algorithm
to perform in real-time.

The important works [112, 250] in 2012 contributed to more effectively representing
target and adapting to appearance variations. Jia et al. [I12] proposed a structural local
sparse appearance model to avoid drift problems and to handle partial occlusions. Con-
cretely, the representation of targets is a set of overlapping local image patches covering the
entire target’s region, and then candidates are encoded in a dictionary containing local im-
age patches of the target by the representing coefficients. Previously, these coefficients are
pooled with respect to the position of their corresponding image patches in the structural
local appearance model described before, as called alignment-pooling step. The pooled
features show which patches of candidates belonging to the target and where the target’s
centroid locates at inside the bounding box. Zhong et al. [250] presented a new appearance
model combining a Sparsity-based Discriminative Classifier (SDC) and a sparsity-based
generative model (SGM) to adapt to the appearance change itself (generativeness) while
reinforcing the distinctness of the target with the background (discriminativeness). In
brief, discriminative features are sparsely selected by encoding a dictionary consisting of
positive and negative samples generated around the target. After selecting features, the
reconstruction of the candidate based on these features focuses on representing the target
more genuinely and effectively. The reconstruction error is later combined with the his-
togram of sparse coefficients, which are encoded in a dictionary of k-means clusters of the
local patches covering all over the target at the first frame. By incorporating SDC and
SGM, the method can enhance the accuracy of the tracker and have better dealing with
occlusions.

Wang et al. [217] proposed an online dictionary learning algorithm for updating the
object’s templates, reformulated the sparse coding problem with the Huber loss. The
loss function allows the sparse coding problem to remain equivalent to the standard ap-
proaches [154] [156] while eliminating trivial templates. This helps the dictionary enor-
mously reduce its size, so the tracker benefits the computational cost.

Wang et al. [215] exploited both classic Principal Component Analysis and sparse rep-
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resentation for efficiently learning dictionaries. Zhang et al. [242] introduced the consistent
low-rank sparse representation to obtain a structured dictionary that allows candidates to
be computed jointly and efficiently. Yang et al. [233] provided a framework of an online
discriminative dictionary learning, meanwhile, Rousseau et al. [182] proposed a dictionary
learning approach to model the appearance of targets, which results in a smaller size of
the dictionary. Zhang et al. [243] released the Structural Sparse Tracking approach, which
generalizes all the structural sparse appearance models. This method uses a predefined
spatial layout to sample local image patches inside candidates and represents these patches
in a local dictionary of image patches. For each candidate, by following the spatial layout
structure, the sparse coefficients are rearranged to reconstitute the coefficient of the entire
candidate as in global sparse modeling approaches. As a result, the method incorporates
candidates with their local patches to jointly represent the target without losing the defined
spatial structure of the model. In 2013, Zhang et al. [238] made a survey of sparse coding
based tracking methods and conducted an experimental comparison of these trackers.

2.3.3 Correlation Filter methods

Searching the target in the area near to the last position of objects makes tracking
problem different from detection problem. Object searching is to find the best matching
candidate among those generated around the last object’s position. Most classic trackers
adopt particle filter frameworks that use a Monte Carlo approach to represent the tar-
get’s position via a probability density of particles. The advantages are the convenience
of estimating and propagating the posterior probability density through frames; dynamic
model (or state transition model) and observation model can be changed to adapt to dif-
ferent tracking methods and appearance models. Nevertheless, the disadvantage of these
frameworks is that in order to ensure the accuracy of the tracking process, the number of
particles dramatically is increased according to the target’s state dimension. There were
many works, previously mentioned [156] [112] 242] 243|, addressing this critical issue.

On the contrary, the first correlation filter in visual tracking was introduced by Bolme et
al. [26] in 2010 to tackle the candidate searching problem differently. Instead of generating a
large number of samples, the method densely convolves the correlation filter, e.g., target’s
templates, with the search area. Then, the most expensive computation, which is the
correlation, is efficiently and quickly computed in the Fourier domain. In this study, to
avoid confusion, we use the terms the spatial domain for “time domain” and Fourier domain
for “frequency domain”. Computing the solution in spatial domain is highly expensive, so
the biggest advantage of this approach is the capability to operate the entire calculation
in the Fourier domain, which makes these trackers overperform others in speed. Figure [2.9
depicts the general scheme of correlation filter tracking approaches.

In the correlation filter (CF) based methods, the tracking problem is formulated as a
regression problem. Instead of sampling training candidates around a target, a circular
matrix (as illustrated in Figure is used to create an artifact of the movement of the
target as shown in Figure which is an illustration of the convolution of an image patch
containing the target’s template and the search image.

In detail, given two same-size vectors v and v, the multiplication of the circulant matrix
of the vector u and the vector v is equivalent to the correlation of two vectors u and wv.
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Figure 2.9 — General scheme of Correlation Filter tracking approaches.

Furthermore, this correlation in the spatial domain can be operated much more efficiently
by an element-wise multiplication in the Fourier domain. As a result, the computation
cost of correlation filters is very low, so these types of trackers usually outweigh other
types in terms of speed. Henriques et al. [102] evolved the initial linear regression into
the non-linear regression by using the kernel trick [I07]. Their kernel matrices possess a
circulant structure (see [L0T] for further details) that allows the correlation in their tracker
to be calculated via the wise-multiplication in the Fourier domain.

Regarding the update mechanism of CF trackers, which makes them resistant to the
appearance variation of their target, some simple methods are implemented, such as updat-
ing the filter with a small coefficient every frame [102]. Danelljan et al. [60] proposed the
Spatially Regularized Discriminative Correlation Filter (SRDCF'), which uses the weighted
window applying to the filter f in order to penalize the filter coefficients corresponding
to background part. The illustration of this method is displayed in Figure where the
regularization weights penalize filter values corresponding to features in the background.
This increases the discriminative power of the learned model, by emphasizing the appear-
ance information within the target’s proposed region (the green box in Fig. [60].
The weighted coefficients of the filter make the response within the bounding box more
discriminative in comparison to the background. To enhance the capability to capture
the characteristics of objects, [59] deploys a CNN network such as imagenet-vgg-2048 [38]
to extract robust visual tracking features. Omne of the setbacks of the CF method is the
restriction on image resolution that limits the accuracy of the tracking results on the size
of bounding boxes. Concretely, the tracking result is obtained from the position of the
pixel corresponding to the highest filter response. To address this problem, Danelljan et

Base sample
" \ Shifted by 1 element
L Shifted by 2 elements
| :
|
|| Shifted by n—1 elements

Figure 2.10 — Illustration of a circulant matrix. The rows are cyclic shifts of a vector image,
or its translations in 1D. The same properties carry over to circulant matrices containing
2D images.[102]
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Figure 2.11 — Example of vertical cyclic shifts of a base sample. The formulation in the
Fourier domain allows the tracker to be trained with all possible cyclic shifts of a base
sample, both vertical and horizontal, without iterating them explicitly. Artifacts from the
wrapped-around edges can be seen (top of the left-most image), but are mitigated by the
cosine window and padding. [102]

al. [6I] introduced the Continuous Convolution Operator for visual tracking by using an
interpolation function. Convolving the filter with an interpolated input image results in a
smooth response and, consequently, a better accuracy. Based on the C-COT (Continuous
- Convolution Operator Tracker) [61], ECO (Efficient Convolution Operator) tracker [58]
proposed using a Gaussian mixture to model the training data in order to avoid over-fitting
caused by recent samples. One of the main obstacles of the basic CFs in object tracking is
to adapt to the object’s evolving shapes due to the articulation of the object or the change
of the angle between the object and the camera while moving. Therefore, the recent CF
tracking methods mainly rely on deep neural nets to enhance their performance in fea-
ture extraction for object tracking, as the heart of the Siamese structures, which will be
described in the next section.

2.3.4 Deep Learning methods

Since the success of deep learning in computer vision, many research works have ap-
plied this technique to tracking problems. Notably, Convolutional Neural Networks (CNNs)
greatly contributed to representing visual data by showing their outstanding performance
in a variety of problems in computer vision. Hence, as one of the first attempts to use
deep learning in visual object tracking, Nam and Han [162] presented the Multi-Domain

a) Standard DCF b) SRDCF

Figure 2.12 — Visualization of the filter coefficients learned using the standard DCF (a)
and SRDCF approach (b)[60]
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Figure 2.13 — The MDnet architecture, which consists of shared layers and K branches of
domain-specific layers. Yellow and blue bounding boxes denote the positive and negative
samples in each domain, respectively [162]

Network (MDnet). This method is technically classified as a multi-domain learning algo-
rithm whose training data is considered as a dataset with multiple domains. Each domain
is a single metadata attribute, and in the paper, these domains correspond to individual
training sequences. In detail, their network consists of a series of shared layers with a
number of branches corresponding to specific domain layers, which are simply the binary
classifiers. The MDnet’s architecture is depicted in Figure The authors separate the
head branches containing the domain-specific information from the shared layers storing
the domain-independent information. Indeed, during the training phase, their CNN is
trained with a series of single sequences (with a corresponding domain-specific layer for
each sequence) and retrained multiple times in the same order. Then during the testing
phase, all the pretrained domain-specific layers are replaced by new ones. Moreover, the
new domain-specific layers and the FC layers in the shared network are fine-tuned during
the tracking process. The intuition behind this approach is that this learning manner helps
obtain the parameters of the shared layers with the useful generic feature representations in
order to track generic objects during the testing phase without pretrained domain-specific
heads. By training the network in this fashion, the tracker becomes generic and not biased
to any specific sequence. To increase the accuracy of the trackers, Danelljan et al. [57]
introduced ATOM tracker (Accurate Tracking by Overlap Maximization), which consists
of a deep neural net structure, which is inspired from IoU-Net [I13]. The IoU-Net predicts
the IoU scores of candidates in order to select the best estimate with the highest IoU value
as the tracking result.

Inspired from the successful works in facial verification [198, [I87], keypoint descriptor
learning [235] and one-shot character recognition [125], Bertinetto et al. [23] introduced the
Fully-Convolutional Siamese (FCsiamese) Networks for object tracking. According to the
paper, the tracking problem is defined as constantly detecting the object frame per frame
via a similarity function f(z,x) that compares an example image z to a candidate image
x of the same size. The similarity function is built on two full-convolutional networks,
and each extracts relevant features for a robust similarity measure. The full-convolutional
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Figure 2.14 — Fully-convolution Siamese architecture. The color pixels indicating the high
values of similarity map correspond to the sub-windows in the search area z [23)]

Siamese architecture is shown in Figure Given a search area x and an exemplar image
z containing a target, those two images are mapped into an embedding via the function
¢, those outputs are the inputs of a similarity function f (¢(2),(z)) whose output is
a scalar-valued score map. Concretely, the cross-correlation operation f(p(2),p(z)) =
o(z)*p(x)+1 is deployed to obtain the similarity measure and this make their model similar
to the Correlation Filter scheme (Fig. without update feedback. In terms of training
data, the ImageNet Video dataset [I83] (ILSVRC2015) containing almost 4500 videos
with more than one million annotated frames was used to train their fully-convolutional
networks.

Meanwhile, instead of using the cross-correlation as the similarity function, Tao et
al. [203] train a matching function within a Siamese structure and treat the tracking prob-
lem as classification. Therefore, all the candidates sampled in the ROI at the current
frame are classified into positive and negative groups. Not formulating the tracking prob-
lem as a classification problem, GOTURN (Generic Object Tracking Using Regression
Networks) tracker by Held et al. [100] used a regression learning model to predict bound-
ing boxes. Within the similar Siamese network architecture, the block of FC layers at
the head of their network structure, as a regression network, is fed by the extracted fea-
tures of both search area (in the current frame) and target object’s template (from the
previous frame) from two CNNs. The output of this regression network is the object’s
bounding box, which is then refined with a provided motion model to adapt to the empir-
ical smooth movements. Another relevant variation of Siamese network was introduced by
Valmadre et al. [208]. The method uses an asymmetric Siamese network that combined
the conventional Correlation Filter structure with a Siamese network. Precisely, a CNN is
pretrained to extract robust features from image frames as a pre-processing step before cor-
relation. Another significant contribution of this paper is their formulation of evaluation
and back-propagation of the Correlation Filter Network. Benefiting from the computa-
tion of correlation in the Fourier domain, this method outperformed other similar trackers
in terms of speed. Recently, there have been many other trackers based on the Siamese
structure such as as [219] 137, 249, 139, 218] and those trackers all achieved excellent re-
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sults in terms of speed and accuracy. Inspired by the Region Proposal Network (RPN)
of Faster RCNN [I76] as the regressor of bounding boxes and the classifier of objectness,
the SiamRPN tracker by Li et al. [I37] includes a Siamese network for pre-processing step
and an RPN for classification and regression. Indeed, the Siamese subnetwork serves to
extract features from template and image frames. Next, the extracted features go through
a Region Proposal Network which comprises one classification branch and one regression
branch. Inside each branch, both template and image features go through a CNN, which
aims to build k anchors for better prediction [I76], before the correlation operation between
these two outputs, i.e., Siamese-like structure. Then the correlation results in k pairs of
layers are the k positive-negative sample pairs building a 2k-layer response map. In the
same manner, the regression branch takes the extracted features of template and image
as inputs of the Siamese-like structure, but the CNN of this branch, instead, generates 4k
features corresponding to 4 coordinates used for the proposal refinement of k anchors. The
detail of SiamRPN is illustrated in Fig. 2.15] By adapting the Region Proposal Network
for object tracking, the method technically resolved the pose and size-change issues during
tracking. Since multiple similar objects may appear in the usual case of SOT videos, SOT
trackers can be distracted from their primary target. Hence, in the paper of Li et al. [139)],
a gradient-guided network was introduced, called GradNet, which uses the gradients ex-
tracted from the Siamese network to update the target’s template so as to differentiate it
from other similar objects.
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Figure 2.15 — Main framework of Siamese-RPN. (x denotes correlation operator) [137]

To conclude, according to the search strategy, most Deep tracking methods are mainly
separated into two approaches: regression problem such as bounding box regression [100],
219| or correlation filter (Fig[2.14) [23, 208, 249] and classification problem (Fig[2.13) [162]
or both [57, 203, 137]. In terms of network structure, they are divided into two groups:
Siamese trackers [23], 208 249] 219] 203] 137, 249, 139, 218] and non-siamese trackers [100,
162, 57].

2.4 Single view multi-object tracking

Despite the tremendous advances of single object tracking algorithms, Multiple Ob-
ject Tracking (MOT) by applying multiple Single Object Trackers is still not practical
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in many applications, which require real-time processing, such as tracking in autonomous
driving. This is because the single object tracking problem ignores many critical issues of
the multiple objects tracking in reality. First, the computational cost is proportional to
the number of objects appearing on the scene. Many single object trackers can perform
real-time tracking (i.e., >80 fps) with high accuracy, but only track one single object in
the video. Secondly, single object trackers focus on differentiating the object’s appearance
from the background, while in most MOT applications, the tracking algorithms need to
track many objects which belong to the same category such as people, vehicles. The SOT
tracker might confuse its target with similar objects since the SOT trackers do not dif-
ferentiate intra-class objects. This leads to poor tracking results due to the segmentation
of the trajectories of multiple objects. Third, MOT algorithms need a detector to detect
the potential target every frame and initialize new trackers from the new detections while
excluding false positives. Next, the SOT trackers perform under the assumption that the
target object is always present in the entire video; however, in MOT videos, an object might
be absent temporally. Finally, since a target can appear and then disappear multiple times
for many reasons such as occlusion or out of Field of View (FOV), the re-identification is
required to reconnect the target’s trajectories. These difficulties keep SOT algorithms from
being adaptable to real-world demands. In the following sections, we will discuss MOT
state-of-the-art methods.

In the literature on tracking, there are two main tracking communities working on
different contexts: the wvisual tracking community, which uses video streams as input,
meanwhile the multi-sensing tracking community which mainly uses multiple sensors to
detect and record target motions by radio signals. Visual tracking is widely known in
computer vision with various applications based on images recorded by cameras. Otherwise,
multi-sensing tracking is popular in the robotic and control field with many applications
from civil to military. In the next subsection, we introduce the most relevant approaches
in multi-sensing tracking that have great impacts on the visual Multi-Object Tracking
algorithms. In this community, the term Multi- Target Tracking (MTT) is mainly used
instead of Multi-Object Tracking (MOT). For convenience, in this dissertation, the term
Multi-Object Tracking (MOT) is used in all cases.

2.4.1 Classic methods

Since the success of tracking techniques in remote sensing, which relies on sensors to
acquire signals, they have become popular in engineering and military fields, and many
MOT trackers developed later have mainly relied on those techniques. The most popular
one is the Kalman filter and its variations such as extended Kalman filter (EKF), unscented
Kalman filter (UKF), unscented extended Kalman filter (UEKF) [31]. In general, the
Kalman filter (known as Linear Quadratic Estimation) models a dynamic system which
is presented through the state of a discrete-time process that is expressed by a linear
stochastic equation system. The state of the process at the time instance ¢, x;, equals to a
state-transition model F' multiplying by the previous state at ¢t —1, x;_1, with some process
noise wy, as the formulations:

Ty = F:L‘tfl + wy (21)

In tracking problem, the state is chosen as the position of the target, the transition
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model predicting the future target’s position is based on its trajectory, and an observation
model obtains the position measure from émage input. However, to model an arbitrary
motion of objects, the linear system does not fit in general cases. Therefore, the non-linear
versions of the Kalman filter, such as extended Kalman filter (EKF), are used instead.
Concerning the extended Kalman filter, the functions of the state transition and observa-
tion model are not necessarily linear but should be differentiable. The EKF adapts the
multivariate Taylor Series expansions to linearize a non-linear model at the working point.
To sum up, there are two steps in the EKF: first, predicting state and covariance esti-
mates; secondly, updating the filter from the measurements (or the observations). In 1979,
Reid et al. [I75] introduced the first multi-target tracker based on the Kalman filter, called
Multiple hypotheses tracker (MHT). The data association strategy used in the MHT is to
delay giving final results after a certain time. The delay allows the algorithm to open up all
the hypotheses, which are all the combinations of detections over the period of the k-last
frames, called the hypothetical tracklets. In other words, considering only the k-last frames
causes the elimination of the hypotheses older than k frames. The MHT possesses multiple
track trees at each time instance, and each tree represents all the hypotheses with a root
growing from a single observation. At each new frame, the track trees are updated from
new observations (i.e., new detections), and each track (i.e., branch) in the trees is given a
score which is based on how likely the track can be formed from its detections. The best
set of non-conflicting tracks (called the best global hypothesis in the original paper [175])
can then be found by solving a Maximum Weight Independent Set problem. Therefore,
the branches, which are way far from the roots, are pruned off the trees. Subsequently,
the MHT has the capability to explore solution space intensively, but its setback is the
unnecessarily increasing number of targets which are mostly false positive. That causes
the difficulties of implementing the MHT in practice due to the high computational cost.
There were several works trying to solve this typical problem such as propagating only
the M-best hypotheses [52] or extending the classical particle fitler [L08]. The MHT tents
to spawn new tracking segments that might belong to the same object (called tracklets).
In many cases, failing to detect object eventually leads to terminating good in-process
tracklets and creating new ones. Hence, the MHT is unable to recover the failure tracking
cases. In 2015, Kim et al. [123] revisited the MHT in the case of visual tracking with a new
appearance model integrating in the conventional target scoring function. The promising
results obtained are comparable to the state-of-the-art performance.

As one of the most popular tracking moving objects methods in the early 80s, Joint
Probabilistic Data Association (JPDA) filter [82] was widely used in the robotic community.
It is an elegant method of associating new detections with existing targets using a joint
probabilistic score. One of the advantages of this approach compared to the MHT is that
it allows objects to be assigned with dummy nodes, which represent missing detections. In
2015, Hamid et al. [93] revisited JPDA filter and applied the method in visual tracking.
By reformulating the data association problem as a bipartite graph problem and solving
it via Interger Linear Programming (ILP), they succeeded in adapting JPDA approach
to the visual tracking problem. One of the biggest problems while implementing JPDA
tracking method in practice is that finding the exact solution of JPDA is NP-hard. To
tackle this issue, Oh et al. [163] presented the Markov chain Monte Carlo data association
(MCMCDA) for solving data association problems arising in multiple-target tracking. The
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authors have proved that, in order to track a single target, the single-scan MCMCDA
algorithm provides a fully polynomial randomized approximation scheme for JPDA. They
also proposed the multi-scan MCMCDA algorithm to track an unknown number of targets.

Using particle filtering as [108], the MCMC-Based Particle Filtering (MCMC-PF)
method by Khan et al. [122] addresses the problem of managing the entries and exits
of multiple targets, which probably have the same appearance and frequently interact each
other. In detail, the method uses a Markov Random Field (MRF) motion prior to tack-
ling the identity-switching issue that occurs when multiple objects overlap. The authors
then introduced the Markov chain Monte Carlo (MCMC) sampling approach to reduce
complexity caused by the MRF formulation.

Vo et al. [213] have developed another well-known tracking technique, which named
Gaussian Mixture Probability Hypothesis Density Filter (GMPHD), to track multiple mov-
ing objects. However, this method is dedicated to detecting moving objects in noisy de-
tection environments. This filter is implemented in multi-sensing tracking rather than in
visual tracking.

2.4.2 Tracker management for Single-Object-tracking based approaches

Processing independently from the multi-sensing tracking community, the visual track-
ing community early focused on tracking a single object. Notwithstanding, as aforemen-
tioned, applying multiple single-object trackers to track multiple objects simultaneously
and parallelly is being challenged by many critical issues. One of the most significant is-
sues is how to keep the parallel tracking process operating while objects can appear and
disappear at any time due to a variety of reasons such as entering/leaving the scene, occlu-
sion by obstacles or by other objects, i.e., mutual occlusion. The mutual occlusion might
be the biggest problem in MOT because it causes trackers to drift, switch their identities,
or "stick" together. These issues demand the Single-Object-Tracking based (SOT-based)
approaches the ability to organize all trackers and keeping trackers active or inactive in
appropriate situations, e.g., targets appear and disappear temporarily.

There are many works [229, 47, [184] 252] 2311 21], 232] addressing this typical issue. In
2015, Xiang et al. [229] specifically addressed this issue and emphasized the importance of
lifetime management while implementing Single Object Tracker to track multiple targets.
The authors proposed an online MOT framework which supports the SOT implementation
on the MOT context by introducing their Markov Decision Process (MDP) formulation
in modeling the lifetime of a single object. The next section is devoted to describing this
work.

2.4.2.1 Markov Decision Process in tracker management

A Markov Decision Process (MDP) is a discrete-time stochastic process that models
a decision-making process whose evolution over time is under a decision-maker with some
probabilities at each time step. A MDP is defined through a tuple of objects (S, A, P, R):

e The target state space S
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Sets A(s) of available actions at state s € S

P,(s,8") := P(sg11 = §'|st = s,a; = a) is the probability that action a in state s at
time ¢ will lead to state s’ at time ¢ + 1

A transition function T: S x A —= S

A reward function R(s,a) is the immediate reward received after taking action a from
state s.

The lifetime of a single target is modeled by a deterministic Markov Decision Process
(MDP), which means P,(s,s’) € {0,1}. The state-space mainly consists of 4 states: Ac-
tive: corresponding to the initialization of a new tracker from a new detection, Inactive: the
ending of any tracker; Tracked: the in-tracking-process of trackers; Lost: the temporally
losing target of trackers. The MDP framework for Multi-Object Tracking is illustrated in
Figure In their framework, all new detections, which do not belong to any current
tracking target, are first set to Active state, then the true positive detections moves on to
tracked state, otherwise the false positive detections are eliminated by setting them to inac-
tive state. The trackers in tracked state continue tracking their target if there are no difficul-
ties such as occlusion, or else, they are paused by transiting to lost state. The lost trackers
restore their tracked state if there is any true corresponding detection found in their nearby
area where they lose their targets. Otherwise, they retain their lost state in the next frame.
Additionally, all inactive trackers are stored as tracking results and never come back to the

tracking process.
In terms of actions and tran-

sitions, there are several possible object a

transitions designed which allow detection o 3

trackers to be transferred between a

4
tions are deterministic, i.e., the a6
next state of a tracker is deter-

mined by its state and the taken a5
action at the current frame. In de- \_ﬂnactive (_/

tail, at active state, a binary Sup- a2 a7

port Vector Machine (SVM) is im- Q

plemented to classify all detections

into false positive and true positive Figure 2.16 — The Markov process of a single object

groups. All true positives take the jn Multiple Object Tracking Xiang’s framework [229]
action aq in order to pass to tracked

state, otherwise, the action as move all the false positives to inactive state. Each tracked
tracker performs a SOT process independently if it succeeds to track its target, it takes
the action ag and remains in {racked state, in the case of failure, a data association step
follows up to link the tracker with the target via nearby detections. Indeed, the success
of the data association (DA) step is decided by a second SVM. If DA step succeeds, the
tracker updates the new appearance of target and remains tracked state, if not, it is set

active lost

target’s states. In the framework al tracked
of Xiang et al. [229], all the ac- /_> C
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into lost state by taking the action ay4. In reference to lost trackers, a matching process
tries to recatch the target from all nearby detections via data association. In the case of
success, the action ag takes the trackers back to tracked state in the next frame; otherwise,
they keeps their lost state with the action as. Moreover, after a fixed time T', every tracker
still in lost state is transferred to inactive state by action a7y. The reward function might
be used to determine the deterministic policies during training [229], which is described
in Reinforcement learning problem (RL). The reinforcement learning problem is used to
determine the best policy for MDP to accumulate the maximum reward at the end of the
process. In the paper [229], the authors present their method as an Inverse RL algorithm.
The authors claimed the use of Inverse Reinforcement Learning (IRL) algorithm to design
the reward function. However, the goal of the IRL problem is to determine the reward
function with a given specific policy, which is unknown in this case. Another issue spotted
in the paper is that the policy applied at tracked state is the outcome of a SOT tracker
(or the data association step), which should be a function of the appearance of the target.
This means that their transition function T'(s,a) does not map the state s (e.g. active,
inactive, lost, tracked) and action a. Their MDP is technically not a standard MDP and
does not solve the initial IRL problem. Instead, the authors use the regular condition loops
to guide their MDP in the tracking process.

Besides the introduction of MDP to naturally handle appearance/disappearance of
targets, to well organize their trackers, they also developed a mechanism to treat all trackers
in order. Concretely, given a new input frame, they first run the tracked-state tracker, this
favors these trackers to gather first the detections belonging to them via back-up DA step.
The remaining detections are used to recover the lost-state trackers. The similarity scores
between the lost-state trackers and these detections are computed in order to assign the
lost-state trackers with the detections via the Hungarian algorithm [I61]. The rest of the
detections serves to initialize new trackers.

2.4.2.2 Spatial-Temporal attention to handle multual occlusions

As one setback of Xiang’s MDP framework [229], the framework uses a simple technique
to detect occlusions, which is a significant issue that deteriorates the tracking results.
Indeed, their method relies on forward-backward Lucas-Kanade keypoints matching, which
is later scored by an SVM. To resolve this problem, many papers [47, 184 252, 231], 21]
focuses on spatial-temporal relation between targets in order to predict occlusion efficiently,
when targets start crossing each other. Chu et al. [47] introduced a novel approach that can
handle normal or mutual occlusions using a spatial-attention network to retrieve features
on the useful zone of attention inside the bounding boxes of targets, called visibility map,
during occlusion. Meanwhile, Zhu et al. [252] proposed a novel MOT framework supporting
SOT-tracker. Their framework performs in the same manner as those of Xiang et al. [229].
Figure shows the pipeline of the MOT framework, which consists of 3 main stages:
detection, single-object tracking, and data association. Two points make this method
different from the MDP of Xiang et al. [229]. First, they introduced a novel network
architecture, named Dual Matching Attention Networks (DMANs) including the Spatial
Attention Networks (SANs), which aims to compare detections with tracklets to extract
useful spatial features on the detections while avoiding the occlusion part, and a Temporal
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Figure 2.17 — The MOT pipeline of [252]. The state of each target switches between tracked
and lost depending on the tracking reliability. Single object tracking is applied to generate
the tracklets for the tracked targets while data association compares the tracklets with
candidate detections to make assignments for the lost targets[252].

Attention Network (TAN) which uses the extracted features as inputs to associate tracklets
with detections. Secondly, their approach matches each tracklet with a detection in the
detection set, which is technically a bipartite graph matching in their data association step.
Recently, Berhmann et al. [2I] presents an MOT framework, called Tracktor, to handle
the track-occlusion-state switching of targets. This method uses two neural nets with a
Faster RCNN backbone to build one classifier for occlusion detection, and another for the
regression between targets’ predictions and detections.

2.4.3 Tracking-by-Detection paradigm

As most of the surveillance applications focus on human tracking, in particular, the last
decade marked the return of the Tracking-by-Detection strategy [114], 237, 4] due to the
emergence of efficient person detectors [4]. By definition, Tracking-by-Detection is to gather
the detections belonging to the same identities in a whole video to infer their trajectories.
This approach possesses several advantages ahead of those of SOT-based. First, not having
any tracker, the Tracking-by-Detection algorithm only focuses on finding the repeat of in-
dividuals from the collection of all detections and matching those detections with different
identities. Therefore, they do not have to cope with the typical problems of SOT-based
methods mentioned previously. Because no trackers are used in the Tracking-by-Detection
approaches, the tracking algorithms do not need to organize the order of trackers, to man-
age the active and inactive state of trackers, to update the target appearance without
causing drift problems, to have a robust appearance model resisting to complex scenes or
the environmental lighting changes. Concerning detectors, the modern detectors can work
in any condition of environments unless targets are unrecognizable. Notwithstanding, the
downside of this approach is that it is sensitive to the reliability of the detectors. This
causes the Tracking-by-Detection approach to deal with several specific problems. First of
all, in most cases, false positives appear frequently due to complex scenes, environment tex-
tures, reflections, or deformed images caused by cameras and shadows. Secondly, multiple
detections can overlap on the same person, and this leads to the need of a post-processing
step to induce the final tracking results. Thirdly, when detectors fail to detect targets, i.e.,
true negatives, this makes their trajectories broken into small segments (called tracklets as
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well). Hence, these tracking methods must be able to estimate hypothetical positions of
targets in the case of missing detections. Lastly, because of resorting detections regarding
each individual, data association approaches are in favor of post-processing after gathering
all detections. Those approaches seem unsuitable for many applications requiring online
tracking results, but in the literature on data association approaches in the next subsection,
there is a significant number of papers reformulating the problem to adapt to the online
processing requirement.

2.4.4 Data association

Since the management of the different targets is the main challenge for MOT, the
Tracking-by-Detection paradigm has evolved as the main approach. This is especially true
since the advent of high-performing category detectors. The main objective of Tracking-
by-Detection methods is to match targets, i.e., objects identified at frame ¢, to detections,
i.e., resulted bounding boxes from detection at frame ¢ 4 1, which is formulated as a data
assoctation problem. In this section, we review the most common data association methods
used in the MOT tracking problem.

2.4.4.1 Minimum Cost Bipartite Matching

Matching the current targets with the new detections found in the next frame is formu-
lated as a bipartite matching problem. Indeed, given two independent sets, one contains
all targets at the current frame, another one contains all detections found in the next frame
image, we want to build a bipartite graph (or bigraph) G = (T, D, E) in which T and D are
respectively the target and detection sets, and each edge e € E represents an assignment
linking a target to one or many detections. Meanwhile, a single detection d € D can not
be matched with more than one target t € 7. Additionally, each edge has a non-negative
cost c(t,d), which is an appearance distance between targets and detections. We want
to find the best matching between two consecutive frames with a minimum total cost. A
variation of the Hungarian algorithm by Kuhn [128] can solve the minimum cost bipartite
matching problem efficiently with the complexity O(n?m) where n and m are the numbers
of targets and detections respectively. In order to handle the entries, exits, or missings of
targets, some papers introduced an extended bipartite matching problem by adding dummy
or virtual nodes. According to these methods, m targets link at the current frame ¢ links
n detections found at the next frame. n virtual entry nodes are added to the target set T
to stimulate the creation of new targets in the next frame. Similarly, m virtual ezit nodes
are also added to the detection set D to prepare for the case of all targets exit in the next
frame. Due to the matching occurs only between the current frame and the last one, these
methods fit for online tracking applications. Figure depicts the extended bipartite
matching problem in data association tracking approaches. Recently, Xu et al. [232] pro-
posed an alternative approach of Hungarian assignment to the bipartite matching problem,
which uses two Gated Recurrent Unit (GRU) to encode targets’ and detections’ features
for another deep neural network, so-called Deep Hungarian Net (DHN). Indeed, the output
of the DHN is a “pseudo” assignment matrix, whose elements are bounded between 0 and
1. To conclude, the papers treating data association as Minimum Cost Bipartite Matching
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(MCBM) problem include [4, 191, 184 252 224], 232].

M targets N entries

119000000000000

11 000000000000’

y N detections M exits

Figure 2.18 — The extended bipartite matching problem in data association tracking.

2.4.4.2 Maximum Weight Independent Set

The data association problem has also been reformulated as a Maximum Weight Inde-
pendent Set (MWIS) problem. Given a set of detections D during a time period from #; to
t9, the trajectories of targets are the independent subset of detections (i.e., tracklets) such
that any single node of the independent set is only found in a single time frame. Hence,
the tracklets are all the possible combinations of detections under the previous conditions.
These tracklets are designated as the nodes of a graph. Those nodes have the weights,
which represent the likelihood of the corresponding tracklet among the other tracklets.
The edges of the graph will connect the nodes (sets of detections) if they share any same
detections. The illustration of this type of graph is shown in Figure 2.19]

134 005
o
132 210
121 223
123 221

Figure 2.19 — The illustration of MHT. (a) Track hypotheses after the gating test at time.
(b) An undirected graph with Maximum Weighted Independent Set (MWIS) is highlighted

in bluel29].

Therefore, we can see the trajectories of the target as the Maximum Weight Indepen-
dent Sets. However, the MWIS problem is known to be NP-hard, and it can be solved
approximately, with the complexity of O(n3) (n is the number of nodes in the graph).
This motivated Brendel et al. [29] to introduce a variant of the MWIS problem devoting

61



2.4. SINGLE VIEW MULTI-OBJECT TRACKING

to matching detections in two consecutive frames, that reduces the complexity to O(n?).
Indeed, the authors redefined the node as a pairs of consecutive detections (2-frame track-
lets); this means they only consider the time period from ¢ to t + 1. As a result, the
trajectories are created from the tracklets consecutively sharing the same detections in the
illustration [2.20] (a). Therefore 2-frame MWIS can be solved optimally and efficiently in

t— t+1 t+1— t+2
(a)

Figure 2.20 — The graph: (a) Blue nodes (tracklets) are connected by edges at the time
frame from ¢ to ¢+ 1, and share the same detection (denoted with integers); this partitions
the graph into two independent subgraphs|29]. (b) The representation of MWIS in bipartite
matching graph problem (Ristani thesis)

O(n?m) time for n detections and m tracklets. With a time frame of 2, the MWIS problem
can be converted to Minimum Cost Bipartite Matching by redefining the weight of edges
(see Fig. (b)) and also the semantic of nodes. In the Multiple Hypotheses Tracking
(MHT) revisited paper, Kim et al. [123] also resolved the MWIS problem to find the best
hypotheses in the last N frames, i.e., the best tracklets of N-frame. Otherwise, Choi [45]
tracker (Near-Online Multiple Target Tracking NOMT) also uses the MHT at his final step
to release the target’s trajectories. Figure describes the MWIS problem in the MHT
method.

2.4.4.3 Minimum Cost Network Flow

Zhang et al. [237], Pirsiavash et al. [I67], Zhang et al. [240] reformulate the data as-
sociation in MOT as a Minimum Cost Network Flow (MCNF) problem. Given a set of
detections, a directed graph is built from these detections as its nodes, and the edges
represent the association of bounding boxes in time.

Additionally, there are two more especial nodes: source and sink. The intuition of this
approach is that the creation of "streams" from source node to sink node correspond to
trajectories of targets from its starting moment to its ending. The source node connects
to any node in the network, except for the sink node, in order to initiate new tracking
processes of all newly detected targets at any frame of the video. Otherwise, apart from
the source, all nodes connect to the sink; thus, the sink is used to terminate the tracking
process of any target at any moment. The conventional nodes are connected by the edges
weighted by an appearance distance between their representing detections in 2 consecutive
frames. The trajectory of a target is modeled by a path which starts from the source, then
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goes through the detection nodes which are linked by minimal cost edges and ends at the
sink. The formation of tracklets in the network looks similar to the phenomena of a stream
from one point to another, its path is located at low energy places. An illustration is given

in Fig.

Source - --s

Figure 2.21 — The network flow in Multiple Object Tracking

There are several approaches to handle the missing detections (i.e., true negatives),
long-time, and mutual occlusions. The authors [240] introduced virtual nodes that could
link to the previous detection nodes with a certain cost, which avoids the flow network
abusing this type of nodes to create "endless" trajectories. In the paper [237], the occlusion
problem is modeled as merging splitting paths. Moreover, the authors [237] also added
in their network flow model an additional node just after every regular node, they are
connected by an observation edge with a cost which is opposite to the confidence score
of detections. This takes into account the false positives generated by detectors. The
algorithm of [237] has a complexity of O(n?mlogn) for a graph with n nodes and m edges.
Pirsiavash et al. [167] state that if n and m scale linearly with the number of frames N,
then the algorithm of Zhang et al. [237] runs in O(N?log N) to find K tracks. Noting
that the graph has unit capacity edges and is directed and acyclic, Pirsiavash et al. [167]
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provided an algorithm that solves the network flow problem in O(K N log N), involving
the Successive Shortest Paths and the bisection search over K. They also give a dynamic
programming greedy approximation algorithm with O(KN) complexity. This algorithm
proves as effective as the one involving the Successive Shortest Paths. The Minimum
Cost Network Flow (MCNF) graph in the papers [237, 167, 240] is the generalization of
the standard MCBM formulations as it covers the effects of false detections, the starting,
ending or temporally missing of targets.

In 2015, a variation of Minimum Cost Network Flow (MCNF), named Pairwise Costs
Network Flow (PCNF), was introduced by Chari et al. [37]. They use the same graph
as in the Minimum Cost Network Flow problem but extend the optimization objective to
account for all pairwise costs. The extension aims to resort to the multiple detections per
target, which usually happens when using detectors. Previously, in the most common way,
especially in an undirected graph formulation, a Non Maxima Suppression (NMS) step [237,
200, 201], 4, 240] usually follows after gathering detections from detectors. A problem
emerging when detecting targets in a crowded scene is that the mutual occlusion results
in the detection overlapping. Applying the NMS also excludes many reliable detections.
Addressing this problem, Pairwise Costs Network Flow (PCNF) builds the internal edges
between detections within a frame, which are not allowed in a standard network flow. These
edges are weighted by an overlapping score, e.g., IoU score. As a result, the cost of a path
(trajectory) includes all pairwise costs in the trajectory, rather than only costs of edges
along the trajectory. The authors resolve the problem via Integer Linear Programming.

2.4.4.4 Graph Multicuts

There were many noticeable papers reformulating data association problem for Multiple
Object Tracking as a Graph Multicut Problem (MP) [200], 201, 119]. Tang et al. [200]
constructed an undirected graph G = (V, E) whose nodes V represent all detections in
the whole video and whose edges connect pairs of detections belonging to the same target,
including those within the same frame. The solution of the Minimum Cost Subgraph
Multicut Problem is the subgraphs G’ = (V', E’) of G, which only includes the detections
from the same targets. Every node and edge are assigned respectively to a unary and
a pairwise cost. The unary cost is usually assigned the confidence score of detections
to account for the false-positive effect of detectors, and the pairwise cost is usually the
affinity between two detections. The graph multicut problem can be solved efficiently
using the duality between maximum subgraph weight [200, 119 179] and minimum total
cost of cut [201, 202]. In the paper [200], the graph multicut problem is interpreted as
the minimization of the cost to retain nodes and edges in the subgraphs, which indicate
the distinct targets. This means that each subgraph containing an unique target should
have a negative cost. The minimization problem is then solved via the Binary Integer
Program (BIP). The graph and subgraph solutions are depicted in Figure 2.22 Graph
multicut was preliminarily introduced in the paper of Ristani and Tomasi [179] in 2014 with
their formulation under the terms correlation clustering or graph partitioning. In fact, the
correlation clustering problem can be obtained from graph multicut by removing the unary
cost and inversing the pairwise cost to positive, which makes the original minimization
problem in Multicut problem papers become the maximization problem in the formulation
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Figure 2.22 — An example for tracking by multicut. A graph (bottom) is built based on the
detections in three frames (top). The connected components that are obtainedby solving
the multicut problem indicate the number of tracks (there are two tracks, depicted in yellow
and magenta respectively) as well as the membership of every detection[201].

of [I79]. Graph multicuts or correlation clustering is an NP-hard problem [11], Tang
et al. [200] proposed a heuristic solution for the unconstrained set partition problem by
using Kernighan Lin algorithm [I18]. Meanwhile, Ristani and Tomasi [I79] rely on the
optimization algorithms for graph partitioning in the literature [§]. Seeing the difficulties
dealing with long-term occlusion or missing detections that leads to the segmentation of
trajectories in tracking results, Tang et al. [202] introduce the Lifted Multicut Problem
(LMP). It originates from the standard multicut problem [201] when redefining the regular
edges and adding the lifted ones. In LMP method, the conventional edges connect the
detections not further than T frames apart, which results in short paths; otherwise, the
other detections can be connected by the lifted edges, which associate the short paths
to form complete trajectories. Figure [2.23]illustrates the advantages of LMP against the
conventional MP. Lastly, the optimization in LMP is solved via APX-hard [66].

2.4.4.5 Generalized Minimum Clique

Another formulation of data association in Multi-Object Tracking is the Generalized
Minimum Clique Problem (GMCP), which was introduced by Zamir et al. [236]. Similarly
to the graph formulation described in graph multicut previously, an undirected graph is
constructed whose nodes represent detections and edges represent their affinity. Based on
this graph, the MOT data association is reformulated as finding the nodes separated from
disjoint clusters indicating distinct targets. In the main graph, these nodes form themself
a complete graph, called a cligue. Each clique contains all detections of one specific target
and has a cost, which is defined as the sum of the appearance distances between each
pair of the target’s detections. The objective now becomes to find the cliques whose cost
is minimum. The authors proposed an iterative algorithm to associate detections into
identities iteratively, one clique (identity) per iteration. Every time a minimum clique is
computed, its edges and nodes are removed from the graph, and the process is repeated
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Figure 2.23 — Ground truth trajectories are shown in grey, regular edges in black, and lifted
edges in green. In the optimal solution solid lines indicate co-identity, and dashed lines
indicate cuts. Correlations are shown on each edge. (a) An example where MP incorrectly
merges vl and v3 whereas (b) LMP does not have evidence of regular path connectivity
for this long range association. (c) MP incorrectly fragments the true trajectory whereas
(d) LMP makes a correct assignment due to the lifted edge[202].

until the graph is empty. An illustration of one iteration is shown in Figure where
one detection from each frame is selected to produce the minimum weight clique. In
practice, since finding the entire graph containing all detections of the whole video is
extremely expensive, the GMCP tracker divides the video into multiple short sequences
to limit the number of detections, then solving the GMCP results in the tracklets of all
individuals. Therefore, after having all tracklets in the videos, they solve another GMCP
again, but this time instead of using detections as nodes of the graph, they use the obtained
tracklets form the last GMCP to determine the complete trajectories of targets in the entire
video. Another variation of GMCP is presented in the paper of Tesfaye et al. [204] as the
Constrained Dominant Sets problem. The difference is that they reformulated the graph
partitioning problem in order to be able to solve it via the quadratic program.

Another sort of graph clique problem for data association MOT is introduced as Gen-
eralized Maximum Multi-Clique Problem (GMMCP) by Dehghan et al. [64]. In a similar
way, they build a k-partite complete graph whose edges pair every couple of nodes (detec-
tions), which are not in the same cluster (set of detections in the same frame). In the case
k = 2, the graph takes the bipartite form, so the problem becomes Minimum Cost Bipar-
tite Matching problem. Using the same strategy in [236], the method solves the GMMCP
twice to have the complete target trajectories. In the first time, the input of the GMMCP
algorithm is low-size tracklets (maximum 10 frames long), the algorithm output the mid-
size tracklets. The output is the input of the GMMCP algorithm for the second times
to obtain the complete trajectories. In addition to the two-stage GMMCP pipeline, the
method expresses the maximization problem in terms of Binary Interger Program (BIP);
these make it capable of solving the assignment problem jointly and optimally for all iden-
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Figure 2.24 — Bi-partite vs. GMCP matching. Gray and colored edges represent the input
graph and optimized subgraph, respectively. Bi-partite matches all objects in a limited
temporal window. On the other hand, the proposed method matches one object at a time
across full temporal span, while incorporating the rest of the objects implicitly[236].

tities in a reasonable time, even though, GMMCP has been proved to be NP-hard [64]. An
illustration of the approach is shown in Figure 2.25

..................
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Figure 2.25 — An illustration of the Maximum Weight Multi-Clique problem. In the graph,
4 cliques are found, each shown in a different color. The method uses virtual nodes
or Aggregated Dummy Nodes (ADN) represented by stars to efficiently model occlusion
phenomenal64].

2.5 Multi-view object tracking

In this section, we focus on the Multiple Target/Object Multiple Camera tracking
(MTMC) problems. In the literature, there are three main problems that can be solved by
a camera network: using overlapping camera networks improving the robustness of tracking
algorithms, e.g., handling occlusions, preventing identity lost/switches; non/overlapping
camera networks tracking targets in a large area; re-identification or person search. The
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diagram shows the main categories of multiple camera systems.

Camera network

Overlapping Non-overlapping
cameras cameras
Multi-View Multi-Camera Re-identification/
Collaborative Tracking Multi-Target Tracking Person search
Improve the Tracking in a large Searching people
robustness (occlusion, area in large scale
ID switch, reliability, ...) images
Keywords: Multi-View, Keywords: Multi-Camera, Keywords: person search,
collaborative tracking, Multi-Target tracking, re-Identification, facial/
distributed/centralized within-camera, across- body recognition,
system, intelligent/smart camera, etc. appearance feature,

cameras, calibration,

attributes, etc.

synchronized system, etc.

Figure 2.26 — Overview of Multiple Camera Multiple Target/Object tracking problems.
Keyword boxes list the commonly used terms for each tracking/re-ID problem.

2.5.1 Architecture of camera networks

In practice, the camera systems using different MTMC tracking algorithms possess
different architectures. According to the computational model, we classify them into two
main models: Centralized Multi-Camera Network and Distributed Multi-Camera Network.
In centralized computing, all cameras connect to a computation center; the video streams
or any detection information is transferred from each camera to the computation center.
With this architecture, each camera usually transfers the detection information including
bounding boxes, the extracted features, etc. or even the video stream sometimes. This
model is used to collect data, detections for offline processing such as offline tracking,
re-identification, or people searching. On the contrary, distributed computing distributes
the computational charge to all cameras inside the network, i.e., Smart Cameras. All
cameras are directly or indirectly connected together. Performing multi-cameras tracking,
in this case, means that each camera performs its own tracking task, all cameras exchange
their tracking results, and collaborate with each other by this information when they need
to track multiple targets more efficiently such as handling mutli-entry/exit, occlusion or
reconnecting trajectories of the same targets across cameras. The information exchanged
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usually consists of trajectories or other tracking results. The comparison between the two
types of architecture is illustrated in Figure [2.27]

Each camera performs
individually its tracking tasks
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a) Centralized multi-camera tracking network b) Distributed multi-camera tracking network

Figure 2.27 — Comparison between two main cameras network architectures. a) Central-
ized multi-camera tracking network, which tracking algorithm perform at the computation
center, meanwhile b) Distributed multi-camera tracking network dispense tracking tasks
for all cameras

The biggest difference between the centralized and distributed systems is that the cen-
tralized architecture is favorable for the complex multi-camera tracking with the eventual
purpose to store the tracking information for monitoring, crime investigation, people search,
etc. This multi-camera system requires the permanent data transferring from each camera
to the central computer; as a result, this camera system requires a powerful computing
center, high-speed connections to all cameras, a data storage, and more energy eventu-
ally. Contrarily, a distributed camera system aims to improve and enhance the tracking
results on each distributed cameras. Each camera has its own tracking results, might oc-
casionally demand its neighbors for help in case of tracking become difficult (occlusions,
lost identities). Furthermore, the connection between distributed cameras do not need a
high bandwidth and could be temporarily interrupted without affecting the whole tracking
system, this leads to the efficiency of the use in energy and network bandwidth, which
are critical for any distributed system. In comparison with the conventional centralized
system, a distributed system has many significant advantages in practice, such as avoiding
legal issues relative to storing private information, light-weighted system, simple to set up.
Finally, this distributed system contributes to the novel concept of Smart Cameras [194].
In the following sections, we discuss in detail the tracking algorithms used in multi-camera
networks.

2.5.2 Generic multi-view tracking

In multiple cameras tracking literature, the multi-camera systems can be categorized
according to the camera topology: non-overlapping and overlapping systems. According to
a survey of camera networks conducted by Radke [I71] in 2010, the relationship between
the overlapping camera network is modeled by an undirected graph in which an edge
appears between 2 cameras if they observe some of the same scene points from different
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Figure 2.28 — (a) A simulated camera network (the focal lengths of the cameras have been
exaggerated).(b) The corresponding communication graph, assuming each camera has the
same fixed antenna range. (c¢) The corresponding vision graph. [171]

perspectives. Meanwhile, the cameras within a non-overlapping system are related via
the likelihood of the event that an object in one camera appears in another after some
amount of time. Furthermore, the camera network is modeled by a directed graph with
expected transition probabilities. A camera network model is illustrated in Figure 2.28
With the non-overlapping network, the objective is to link the targets belonging to the
same identities which appear in the videos of multiple cameras networks. This type of
problem has recently been reformulated as person re-identification problem. However, the
initial problem of non-overlapping cameras is addressed under the strict spatio-temporal
constraint, for example, an individual cannot appear at the same time at different places
in the camera network.

On the other side, the overlapping camera system is developed to resolve the most
basic purpose of visual tracking algorithms, which is to find targets’ full trajectories, then
increase the accuracy, reliability, and robustness of a tracking system. Indeed, dealing with
occlusion is still the unanswered question for any single view tracking algorithm. Even
though several methods have the ability to recatch lost identities after occlusion, their
complete trajectories will never be determined within one single view system. In many
tracking applications that serve to analyze the behavior of crowds or to detect abnormal
movements of people, observing full trajectories is essential. This type of tracking problem
is not necessarily under the same constraints as mentioned in the non-overlapping topology,
but it essentially requires the calibration and synchronization of all cameras in the network.
We emphasize that in the literature on multiple camera tracking system, the term mults-
view tracking means tracking in an overlapping camera system, whereas the term multi-
camera tracking is more general, it can be neither overlapping or non-overlapping system.
In terms of camera calibration, calibration helps a single-camera project its tracking result
on the common plane to obtain the targets’ coordinates in order to collaborate with other
cameras inside the system. These coordinates from all cameras might be useful if all of
them are gathered at the same time; i.e., this requires synchronization between cameras.
More concretely, calibrating a camera is to determine the mapping function that maps
pixel coordinates on images to 3D coordinate on the real world. This can be done through
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homographic transformation matrices after correcting the image deformations caused by
flaws on the lenses of camera [206], 245] 117]. A survey on overlapping camera networks by
Taj and Cavallaro [199] summarized the state-of-the-art approach until 2009. The majority
of multi-view tracking approaches are inspired by those of remote sensing. The diagram of
these multi-view tracking methods is presented in Figure [2.29]

Multi-view
tracking
Track first Fuse first Manifold based
Independent Collaborative Detection-based Track-before Embedding
tracking tracking tracking detect

Figure 2.29 — Overview of the classic multi-view approaches [199].

Following this categorization, the track-first approaches perform tracking on each cam-
era, then project and link the tracking results on the other cameras. In this branch, several
methods perform multiple single object trackers simultaneously, then fuse their results.
The fusion step broadly rectifies the results on each camera and infers the final trajecto-
ries on the ground plane. The typical papers using this approach include Kalman filter
by Black et al. [24], Bayes tracker by Cai, and Aggarwal [33]. Some papers extend this
approach while collaborating trackers such as graph matching approach [5], Gaussian Mix-
ture Probability Hypothesis Density (GMPHD) approach [166] or providing a multi-object
trackers such as collaborative particle filters [71], 170} [65]. One of the advantages of this
approach is only a little amount of information being transferred inside the camera net-
work. Whereas, the fuse-first approaches are usually seen in the Detection-based tracking
(or Tracking-by-Detection) algorithms [159] 5, 120, [73| 124] 8T, 20}, 50, 3].

A typical algorithm in this approach is the Multi-camera people tracking with a Prob-
abilistic Occupancy Map by Fleuret et al. [81]. In detail, the authors introduced a Proba-
bilistic Occupancy Map (POM), which estimates the marginal probabilities of the presence
of individuals on a fixed-size 2D grid map, given binary images corresponding to the result
of a background-subtraction from different viewpoints. The detection step results in the
binary image of background subtraction on each view, and then under the appearance
model, they determine the possibilities of the presence of targets on the POM map. The
illustration of the method is described in Figure Indeed, the POMSs obtained in the
entire videos are modeled as the input of the directed graph of a dense network flow prob-
lem. Each node on the network flow represents a cell of the 2D grid map (POM). They
stack all POMs and add the edges which connect a node to those neighbors in the next
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frame. Each path found in the network flow has a minimum total cost. The unary cost at
a node is its value on POM, and the pairwise cost is the binary value indicating whether
or not a node is inside its neighbor in the previous frame. The illustration is shown in
Figure 2.31] The K paths of K individuals in the videos are computed via K shortest
Paths problem [20]. There are many disadvantages to this approach. First, the method
only works under the assumption that the number of targets K is known. Secondly, the
scheme of this approach is impractical for online applications, because it processes through
two main steps: fusing detections on the map, solving the K-paths problem to extract
trajectories. Thirdly, a significant amount of data is being transferred during the tracking
process. Finally, the accuracy of the tracking algorithm significantly depends on the grid
size of the map. Lately, there have been a few efforts trying to improve the accuracy of
this method, such as Deep Occlusion Reasoning by Baque et al. [13]. Having a similar
idea of fusing detection first, Cocsar et al. [50] sparsely encode the detection information
to minimize the size of data before sending.
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Figure 2.30 — The estimation of the Probabilistic Occupancy Map (POM) (the last column).
Camera views show both background subtraction blobs and the synthetlc average image
corresponding to different iterations [81].

The last category in [199] is the manifold-based approaches that project features on a
manifold to identify the evolution of the data, which includes the positions of targets in the
case of the lack of the camera calibration data. Sunderrajan et al. [195] proposed a method
for object tracking from different views based on multi-camera appearance modeling, which
uses a manifold to model the global multi-view appearance for targets. Between any pair
of views, the extracted features (e.g., the histogram of oriented gradients features (HOG)
and normalized color features) from a target are used to create a manifold surface [84, [89]
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Figure 2.31 — Network flow model used for tracking objects moving on a 2D grid, such as
in pedestrian tracking. For the sake of readability, only the flows to and from location k
at time ¢ are printed [20].

where this features pair is two distinct points on it. Intuitively, the points represent the
local appearance in single views of a particular target, and the manifold surface is its global
appearance representation. The shortest path linking two points on the manifold is called
the geodesic. On this geodesic, the authors interpret the intermediate points as the positive
candidates, in addition to the negative candidates which are sampled around the target in
all views, to learn a multi-view discriminative appearance classifier such as [6, 250, [7]. The
illustration of the geodesic connecting two views of a target is presented in Figure [2.32

To deal with the interactions between targets, e.g., mutual occlusion, the authors intro-
duce interacting MCMC framework using the local and global particle filters with Markov
Chain Monte Carlo (MCMC) sampling. For local particle filters, the observation likelihood
is computed using the local appearance model and the object’s interaction that are local
to the camera. For global particle filters, the observation likelihood is computed based on
global appearance models, multi-camera information, and scene priors.

Most of the above multi-view multi-object tracking algorithms aim to process tracking
tasks online to adapt the requirement of many surveillance applications. However, there are
many applications in which the online processing is not exigent such as crime investigation,
analysis of crowd behavior. Hence, the data association approaches in MOT literature are
straightforward and adaptable to extend in the context of multiple cameras. The next
subsection is devoted to multiple cameras data association based methods.

2.5.3 Multiple cameras data association based methods

In this section, we focus on reviewing the Multiple Target Multiple Cameras approaches,
which are extended or extendable from Multiple Object Tracking (MOT) or Multiple Tar-
get Tracking (MTT) on a single-view. Systems of multiple non-overlapping cameras, in
reality, aim to observe and monitor people in a large area for security purposes. Because
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Figure 2.32 — Training samples for global appearance learning is obtained by projecting
samples from the geodesic, which links view 1 to view 2, onto different generative subspaces
obtained by varying m’. The eclipse represents the Grassmann manifold G,, 4 with S; and

Sy are points on it[195].

of the particularity of its objective, high-resolution cameras are usually set up at high po-
sitions to maximize their field of view, which rarely overlap each other, but they are not
completely separated to avoid blind spots while surveilling on a large area. As mentioned
in the Section 2.4.4] implementing the data association based MOT algorithm in a multiple
camera context is obviously feasible, because the input of all those algorithms is simply
time-labeled detections without knowing where they come from either a single camera or
a number of cameras. However, it requires several changes in the graph model and the
spatio-temporal constraints. For example, on the one hand, two disjoint cameras cannot
be seeing the same individual at the same time, so the graph is not allowed to have an
edge linking any two detections belonging to two disjoint cameras. On the other hand, the
graph can build edges connecting the detections that are from different cameras but reside
in the overlapping zones.

Solving the global optimization of the decomposition graph problem is computationally
infeasible, so in practice, the global data association MOT algorithms such as graph mul-
ticuts [200} 179, 2011, 202, 119], graph cliques [236, [64], network flow [237| 167, 240}, 37] can
perform on short subsequences of the videos from all cameras. Meanwhile, the other data
association methods including bipartite matching [4, 191, 184, 224] 252 232] and inde-
pendent set [29, [123] do not address multi-camera tracking problem, because the tracklets
are formed through the detections in consecutive frames (i.e., a short time window) of a
single view, whereas tracking with multiple cameras is to connect trajectories of targets at
different times.

Besides the global optimization approach for MTMC tracking, there is another approach
that separates MTMC tracking into two steps: MOT on every single view, then linking
the trajectories across cameras [204, 121, 5]. A typical method in this category is the
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Constrained Dominant Set Clustering (CDSC) presented by Tesfaye et al. [204]. Given
an edge-weighted graph G = (V, E,w) (i.e., the unary cost is excluded), the goal of the
algorithm is to find a subgraph that contains all or some of the elements of the constraint
set, which forms a coherent and compact set for one individual. The method performs
tracking in two stages. The first stage is to determine trajectories (called tracklets in
the paper) of all targets in each camera, which is called within-camera tracking with the
formulation of Constrained Dominant Sets. To enhance the tracking tasks to be able to
manage the multi-entry /exit of targets, the authors proposed an additional data association
step to cluster the tracklets belonging to the same identities. A tracklet mentioned in the
paper [204] is a complete trajectory of an individual since it appears on the scene until
getting out of the scene. The affinity between all considered detections is presented by
an affinity matrix A = (a;;) where a;; is the weight of the edge w(i,j) connecting to
two nodes (detections) 4, j. Solving the CDSC problem via linear quadratic program, they
obtain the clusters of trajectories on a single view, each cluster contains all motion history
of an individual, called a track of each target. On the second stage, the algorithm links
those tracks from all cameras, called across camera tracking. Similarly, a graph is built
from tracks as its node, whereas its edges are defined by a corresponding affinity matrix
depicting the similarity between those tracks. At this time, the across camera tracking
stage releases the complete trajectories of targets on the whole camera network. The
illustration is displayed in Figure [2.33]
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Figure 2.33 — A general idea of the Constrained Dominant Set Clustering (CDSC) method.
(a) First, tracks are determined within each camera, then (b) tracks of the same person
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