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Résumé

Les travaux présentés dans cette thèse abordent les problématiques de détection et suivi
d'objets, en utilisant un système de caméras collaboratives. L'idée principale de l'utilisation
de plusieurs caméras pour réaliser le suivi est de résoudre les problèmes d'occultation que
les méthodes de suivi de mono-caméra sont incapables de régler. Pour s'adapter des critères
dans plusieurs applications de surveillance, nos travaux se concentrent sur le problème de
suivi en ligne de plusieurs objets dans le contexte de plusieurs caméras synchronisées et
dont les champs de vue sont chevauchent. Dans le cas de notre étude, les axes suivants
ont été étudiés : premièrement, utiliser plusieurs caméras pour suivre une seule cible;
deuxièmement, suivre plusieurs d'objets simultanément; �nalement, réidenti�er les objets
qui réapparaissent ultérieurement dans le champs de vue. Dans les conditions où les tâches
de suivi se font sur une scène en plein air, l'apparence des objets (forme, couleur, texture,
. . . ) change. Les changements sont dus aux conditions de luminosité variant à l'extérieur,
des mouvements des objets eux-mêmes. Souvent, les performances de suivi sont dégradées
à cause de la perte de leurs cibles. Nous avons développé des algorithmes de suivi avec
multi-caméras qui permettent à chaque caméra de participer au processus de suivi des
autres caméras dans le réseau.

En détail, notre première contribution est une plateforme de suivi avec plusieurs caméras
basée sur les �ltres particulaires qui permet à une caméra de collaborer avec les autres
caméras dans le cas où la cible est occultée par l'environnement ou l'autres cibles. Le
modèle d'apparence d'objet est une représentation parcimonieuse où les di�érentes ap-
parences d'une cible sont représentées by une combination de plusieurs patches d'image
de référence contenue dans un dictionnaire. Notre deuxième contribution concerne des
problèmes d'occultation mutuelle entre objets. En pratique, les objets souvent s'occultent
mutuellement, particulièrement dans les scènes de foules. En adaptant une approche de
suivi de multi-objet avec le Processus de Décision Markovien au contexte d'un système de
caméras collaboratives, notre algorithme de suivi avec multi-caméras permet de résoudre
des problèmes d'occultation dans le suivi par une seule caméra. Notre troisième contribu-
tion concerne de la réidenti�cation des cibles d'une vue à l'autre. Nous avons reformulé le
problème d'a�ectation de cibles entre deux vues comme une problème du plan de trans-
port optimal non-équilibré. Nous avons ensuite étendu les résultats d'a�ectation de cibles
dans les paires de caméras à notre algorithme de suivi par multi-caméra. En outre, nous
étudions les caractéristiques d'apparence qui permets de réidenti�er des objets dans dif-
férentes vues comme l'histogramme de couleurs, des points d'intérêt Lucas-Kanade ou des
caractéristiques extraites par des réseaux convolutifs profonds.

En ce concerne des expérimentations, nous avons évalué notre algorithme par les
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métriques communnes sur les bases de données publiques. Les résultats expérimentaux
ont montré la pertinence de nos algorithmes de suivi multi-caméras par rapport à une
seule caméra, ainsi que l'impact des di�érentes caractéristiques sur la performance de suivi
de notre approche de suivi par multi-caméras.
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Mots clés : Detection d'objets, Suivi de mono-objet, Suivi de multi-objet, Suivi de
multi-target multi-camera, Apprentissage profond de caractéristiques, Transport optimal.
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Abstract

The work presented in this thesis concerns the problem of visual multiple object tracking
using a system of collaborative cameras. The main idea of using a multi-camera system in
tracking is to solve occlusion problems, which single-camera tracking methods are unable
to solve. With multiple automated surveillance applications in mind, our work focuses
on the problem of online multi-object tracking in a multi-camera system in which �elds
of view are overlapped, and video frames are synchronized. In the case of our study, the
thesis includes the following objectives: �rstly, to track a single object in a multi-camera
system; secondly, to track multiple objects simultaneously; �nally, to re-identify objects
which possibly reenter the �elds of view of the cameras multiple times. In outdoor tracking
scenes, objects often change their appearances, including their shape, their size, and their
texture. The changes are due to the varying lighting condition and the movement of the
objects themselves. This causes tracking algorithms to lose their targets frequently, and
therefore degrades tracking performance. We developed multi-camera tracking algorithms
that allow each camera to participate in the overall tracking process of the network to
improve its tracking result.

In detail, our �rst contribution is a multi-camera tracking framework based on particle
�lters that allows a camera to collaborate with other cameras when targets are occluded
by the environment or other targets. The model used for object appearance, in our frame-
work, is the sparse representation, in which the variant appearances of a target are repre-
sented by a combination of reference image patches contained in a dictionary. Our second
contribution addresses the problem of mutual occlusion between objects. In practice, ob-
jects are often occluded, especially in crowded scenes. By adopting a Markov Decision
Process multi-object tracking algorithm to the context of multiple collaborative cameras,
our tracking algorithm mainly solves the problems of occlusion occurring in single-camera
tracking. Our third contribution concerns re-identifying targets across cameras. We refor-
mulated the assignment problem of targets between two views as an unbalanced optimal
transport problem. The target assignments in pairs of cameras are then adapted to our
multi-camera tracking algorithm. Additionally, we studied multiple appearance features
that allow the multi-camera system to re-identify multiple targets in di�erent views such
as color histogram, Lucas-Kanade keypoints, or deep characteristic features extracted by
convolutional neural networks.

Concerning experimentation, we evaluated our algorithms by multiple common metrics
on public multi-camera video databases. Our experiments showed the relevance of our
multi-camera tracking algorithms to single-camera ones, as well as the impact of di�erent
characteristic features on the tracking performance of our multi-camera tracking approach.

9



ABSTRACT
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10



Contents

1 Introduction 23

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Context of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Remaining challenges in object tracking . . . . . . . . . . . . . . . . . . . . 28

1.4 Hypotheses and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Plan of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 State of the Art 35

2.1 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Classic methods and image datasets . . . . . . . . . . . . . . . . . . 35

2.1.2 Deep learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Appearance feature extraction for object tracking . . . . . . . . . . . . . . . 41

2.3 Single-object tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Classic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Sparse coding based methods . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Correlation Filter methods . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Deep Learning methods . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Single view multi-object tracking . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Classic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Tracker management for Single-Object-tracking based approaches . . 56

2.4.3 Tracking-by-Detection paradigm . . . . . . . . . . . . . . . . . . . . 59

2.4.4 Data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Multi-view object tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.1 Architecture of camera networks . . . . . . . . . . . . . . . . . . . . 68

2.5.2 Generic multi-view tracking . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.3 Multiple cameras data association based methods . . . . . . . . . . . 73

2.5.4 The re-identi�cation problem . . . . . . . . . . . . . . . . . . . . . . 78

11



CONTENTS

2.6 Benchmark and performance measure . . . . . . . . . . . . . . . . . . . . . . 80

2.6.1 Multiple Object Tracking metric in single-camera and multi-camera . 81

2.6.2 MOT and MTMC Datasets . . . . . . . . . . . . . . . . . . . . . . . 84

3 Sparse coding for collaborative tracking mono-object in multi-view 87

3.1 Particle �lter framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Sparse coding in visual representation . . . . . . . . . . . . . . . . . . . . . 91

3.3 Collaborative multi-camera tracking framework . . . . . . . . . . . . . . . . 94

3.3.1 Common ground-plane particle �lter . . . . . . . . . . . . . . . . . . 94

3.3.2 Template update strategy . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.3 Network architecture for recovering tracking state and propagating
error prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Multiple object tracking: Target association across multiple cameras 109

4.1 General online multi-camera multi-object tracking framework . . . . . . . . 110

4.1.1 Tracker management in online multi-camera multi-object algorithms 110

4.1.2 Deployment of the across-view association data to improve robustness114

4.2 Data association across cameras . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.1 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.2 Distance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.3 Combining appearance and trajectory distances . . . . . . . . . . . . 126

4.2.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Target Association via Unbalanced Optimal Transport . . . . . . . . . . . . 135

4.3.1 Motivation: Combining multiple distance features . . . . . . . . . . . 135

4.3.2 Proposed Targets Association Method . . . . . . . . . . . . . . . . . 137

4.3.3 Ground cost learning for UOT-based targets association across cameras140

4.3.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Conclusion and perspectives 147

Annexes 151

A Detail of experimental results 151

Index 186

12



List of Tables

2.1 Data association based MOT methods in multiple cameras context. Ab-
breviation: DPM - Deformable Part Model [77]; LSTM - Long short-term
memory [1]; CNN - Convolutional Neural Network [135, 99]; GRU - Gated
Recurrent Unit [232]; DHN - Deep Hungarian Network [232]; STRN - Spatial
Temporal Relation Network [231]; HC - Color histogram; HoG - Gradient
histogram; IoU - Intersection over Union; POM - Probabilistic Occupancy
Map [81]; BTF - Brightness Transfer Functions; MORLS - Multi-Output
Regularized Least Squares [138]; ALFD - Aggregated Local Flow Descrip-
tor [45]; ILP - Integer Linear Program; MAP - Maximum-a-posteriori; KSP
- K-shorstest path; RANSAC - RANdom SAmple Consensus; BIP - Binary
Integer Program; PQP - Parameterized Quadratic Program; MC - Multi-
Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Comparison of single-view methods with di�erent multiple view con�gura-
tions. The bold value represents the best result on each line. . . . . . . . . 104

3.2 Comparison of State-of-the-art methods to our multi-view method on the
�PETS09-S2L1� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Impact analysis on di�erent con�gurations. This is the example of σxy The
bold value represents the best results. *: Experiments with the star topol-
ogy camera network 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 The data assignment in the computation node within our collaborative
multi-camera framework. In this example, the identity A is being seen by
all cameras with the tracker IDs 1, 2, 2, 1 in views 1, 2, 3 and 4, respectively.
Meanwhile, the identity C is only being seen by views 2, 3 and 4 (out of the
FOV of view 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Setting 1: Overall scores of MOT metric on �PETS09-S2L1� sequence. . . . 131

4.3 Setting 2: Overall scores of MOT metric on �PETS09-S2L1� sequence. . . . 131

4.4 Setting 1:Overall scores of MOT metric on �terrace1� sequence. . . . . . . . 131

4.5 Setting 2: Overall scores of MOT metric on �terrace1� sequence. . . . . . . . 132

4.6 Comparison of Settings 1 and 2, and pointwise and DTW distances. . . . . 132

4.7 Scores on �PETS09-S2L1� multi-camera sequence (with OpenPose detec-
tor [36]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

13



LIST OF TABLES

4.8 Scores on �terrace1� multi-camera sequence (with OpenPose detector [36]). . 146

4.9 Scores on �PETS09-S2L2� dual-camera sequence (with Mask R-CNN detec-
tor [97]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

14



List of Figures

1.1 The general architecture of camera surveillance systems . . . . . . . . . . . 24

1.2 Detection and tracking in self-driving cars . . . . . . . . . . . . . . . . . . . 27

1.3 Convergence of disciplines for smart camera networks: image sensors, sen-
sor networks, signal processing for embedded computing, and computer vi-
sion [194]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Summary of the two-stage deep learning methods in object detection[145]. 38

2.2 Summary of one-stage deep dearning approaches in object detection [145]. . 39

2.3 Illustration of YOLO detection object approach [197]. . . . . . . . . . . . . 40

2.4 The challenges while observing a target from di�erent views: the width-
height ratio of a standard bounding box is �xed while this ratio can be
changed in a di�erent view like from high altitude; the lighting condition
e�ecting to the color pattern inside bounding box of target [40]. . . . . . . . 41

2.5 Human body being encoded separately into two main parts: torso and legs [40] 42

2.6 Development of Single Object Tracking methods. There are four main ap-
proaches in Single Object Tracking: classic (orange), sparse-coding based
(blue), correlation �lter (green), and deep learning (violet) approaches. . . . 43

2.7 General scheme of Single Object Tracking approach . . . . . . . . . . . . . . 44

2.8 Sparse representation with target and trivial templates handling occlusion [155]. 47

2.9 General scheme of Correlation Filter tracking approaches. . . . . . . . . . . 49

2.10 Illustration of a circulant matrix. The rows are cyclic shifts of a vector
image, or its translations in 1D. The same properties carry over to circulant
matrices containing 2D images.[102] . . . . . . . . . . . . . . . . . . . . . . 49

2.11 Example of vertical cyclic shifts of a base sample. The formulation in the
Fourier domain allows the tracker to be trained with all possible cyclic
shifts of a base sample, both vertical and horizontal, without iterating them
explicitly. Artifacts from the wrapped-around edges can be seen (top of the
left-most image), but are mitigated by the cosine window and padding. [102] 50

2.12 Visualization of the �lter coe�cients learned using the standard DCF (a)
and SRDCF approach (b)[60] . . . . . . . . . . . . . . . . . . . . . . . . . . 50

15



LIST OF FIGURES

2.13 The MDnet architecture, which consists of shared layers and K branches of
domain-speci�c layers. Yellow and blue bounding boxes denote the positive
and negative samples in each domain, respectively [162] . . . . . . . . . . . 51

2.14 Fully-convolution Siamese architecture. The color pixels indicating the high
values of similarity map correspond to the sub-windows in the search area
x [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.15 Main framework of Siamese-RPN. (? denotes correlation operator) [137] . . 53

2.16 The Markov process of a single object in Multiple Object Tracking Xiang's
framework [229] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.17 The MOT pipeline of [252]. The state of each target switches between
tracked and lost depending on the tracking reliability. Single object track-
ing is applied to generate the tracklets for the tracked targets while data
association compares the tracklets with candidate detections to make as-
signments for the lost targets[252]. . . . . . . . . . . . . . . . . . . . . . . . 59

2.18 The extended bipartite matching problem in data association tracking. . . . 61

2.19 The illustration of MHT. (a) Track hypotheses after the gating test at time.
(b) An undirected graph with MaximumWeighted Independent Set (MWIS)
is highlighted in blue[29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.20 The graph: (a) Blue nodes (tracklets) are connected by edges at the time
frame from t to t+ 1, and share the same detection (denoted with integers);
this partitions the graph into two independent subgraphs[29]. (b) The rep-
resentation of MWIS in bipartite matching graph problem (Ristani thesis) . 62

2.21 The network �ow in Multiple Object Tracking . . . . . . . . . . . . . . . . . 63

2.22 An example for tracking by multicut. A graph (bottom) is built based
on the detections in three frames (top). The connected components that
are obtainedby solving the multicut problem indicate the number of tracks
(there are two tracks, depicted in yellow and magenta respectively) as well
as the membership of every detection[201]. . . . . . . . . . . . . . . . . . . . 65

2.23 Ground truth trajectories are shown in grey, regular edges in black, and
lifted edges in green. In the optimal solution solid lines indicate co-identity,
and dashed lines indicate cuts. Correlations are shown on each edge. (a) An
example where MP incorrectly merges v1 and v3 whereas (b) LMP does not
have evidence of regular path connectivity for this long range association.
(c) MP incorrectly fragments the true trajectory whereas (d) LMP makes a
correct assignment due to the lifted edge[202]. . . . . . . . . . . . . . . . . . 66

2.24 Bi-partite vs. GMCP matching. Gray and colored edges represent the input
graph and optimized subgraph, respectively. Bi-partite matches all objects
in a limited temporal window. On the other hand, the proposed method
matches one object at a time across full temporal span, while incorporating
the rest of the objects implicitly[236]. . . . . . . . . . . . . . . . . . . . . . . 67

16



LIST OF FIGURES

2.25 An illustration of the MaximumWeight Multi-Clique problem. In the graph,
4 cliques are found, each shown in a di�erent color. The method uses vir-
tual nodes or Aggregated Dummy Nodes (ADN) represented by stars to
e�ciently model occlusion phenomena[64]. . . . . . . . . . . . . . . . . . . . 67

2.26 Overview of Multiple Camera Multiple Target/Object tracking problems.
Keyword boxes list the commonly used terms for each tracking/re-ID problem. 68

2.27 Comparison between two main cameras network architectures. a) Central-
ized multi-camera tracking network, which tracking algorithm perform at
the computation center, meanwhile b) Distributed multi-camera tracking
network dispense tracking tasks for all cameras . . . . . . . . . . . . . . . . 69

2.28 (a) A simulated camera network (the focal lengths of the cameras have been
exaggerated).(b) The corresponding communication graph, assuming each
camera has the same �xed antenna range. (c) The corresponding vision
graph. [171] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.29 Overview of the classic multi-view approaches [199]. . . . . . . . . . . . . . 71

2.30 The estimation of the Probabilistic Occupancy Map (POM) (the last col-
umn). Camera views show both background subtraction blobs and the syn-
thetic average image corresponding to di�erent iterations [81]. . . . . . . . . 72

2.31 Network �ow model used for tracking objects moving on a 2D grid, such
as in pedestrian tracking. For the sake of readability, only the �ows to and
from location k at time t are printed [20]. . . . . . . . . . . . . . . . . . . . 73

2.32 Training samples for global appearance learning is obtained by projecting
samples from the geodesic, which links view 1 to view 2, onto di�erent
generative subspaces obtained by varying m′. The eclipse represents the
Grassmann manifold Gn,d with S1 and S2 are points on it[195]. . . . . . . . 74

2.33 A general idea of the Constrained Dominant Set Clustering (CDSC) method.
(a) First, tracks are determined within each camera, then (b) tracks of the
same person from di�erent non-overlapping cameras are associated, solving
the across-camera tracking. Nodes in (a) represent tracklets and nodes in
(b) represent tracks. The ith track of camera j, T ij , is a set of tracklets that
form a clique. In (b) each clique in di�erent colors represent tracks of the
same person in non-overlapping cameras. Similar color represents the same
person.[204] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.34 An illustration of the Ristani et al. [180] approach. Given video streams, a
person detector extracts bounding box observations from video. For trajec-
tory inference, a feature extractor extracts motion and appearance features
from observations. These are in turn converted into correlations and labeled
using correlation clustering optimization. Finally, post-processing interpo-
lates missing detections and discards low con�dence tracks. Multi-stage
reasoning repeats trajectory inference for tracklets, single- and multi-camera
trajectories[180]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.35 The illustration of an end-to-end person re-ID system that includes (a)
pedestrian detection and (b) re-identi�cation[247]. . . . . . . . . . . . . . . 78

17



LIST OF FIGURES

2.36 Visualization of di�erent identities on an embedding space. A small crop of
the Barnes-Hut t-SNE [209] of the learned embeddings for the Market-1501
test-set [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.37 A threshold T deciding whether the hypotheses are false positives or not.
The distance between the hyothesis h1 and the object o1 exceeds the thresh-
old at frame t + 2 resulting in a false positive and a miss (i.e., false nega-
tive) [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.38 Illustration of the di�erent error types in MOT metric [22]. (a) Mapping
tracker hypotheses to objects shows false negatives (misses), false positives
and the correct tracking hypotheses i.e., true positives. (b) Mismatch error . 83

2.39 Illustration of Matching the true trajectories (blue nodes) and computed
trajectories (green nodes) at a single frame, The process operates on all
frames to compute False Positive ID (IDFP), False Negative ID (IDFN),
and True Negative ID (IDTN). . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.40 Topology of camera network in the PETS 2009 datasets[78]. . . . . . . . . . 85

2.41 The Terrace sequences in Multi-camera pedestrians videos EPFL dataset.
The sequences are made in outdoor scene by 7 people in front of 4 DV
cameras, for around 3 1/2 minutes. . . . . . . . . . . . . . . . . . . . . . . . 85

2.42 Topology of the 8 cameras in the Duke MTMC dataset[180]. The red spots
indicate the view direction of cameras. . . . . . . . . . . . . . . . . . . . . . 86

3.1 In this example, the bootstrap �lter starts at time t− 1 with an unweighted

measure
{
x
(n)
t−1, N

−1
}
, which provides an approximation of p(xt−1|y1:t−2).

For each particle, its weight is computed from p(xt−1|yt−1) at time t−1. This

results in the weighted measure
{
x
(n)
t−1, w

(n)
t−1

}
, which yields an approximation

p(xt−1|y1:t−1). Subsequently, a new set of unweighted particles
{
x
(n)
t , N−1

}
are resampled from p(xt−1|y1:t−1). Those unweighted particles are still an
approximation of p(xt|y1:t−1). Finally, we weight the particles to obtain the
estimate of p(xt|y1:t) [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Illustration of the possible appearance changing in tracking videos . . . . . 93

3.3 Illustration of the multi-camera collaborative tracking approach. From left
to right: frame 66 of Camera 1 (F66C1) (no occlusion), F66C2 (occlusion),
F66C3 (no occlusion), F66C4 (no occlusion); First row: the particles in view
2 (green) are projected into other view (blue). Second row: the projected
particles on the ground plane into each single view. Third row: same as
second row but particles are spreading directly on the common ground. . . . 95

3.4 Visualization of the common ground-plane particle �lter in multi-camera
tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 An example of drift problem in [153]. The �rst row illustrates the tracker is
failing to track the car after not updating any new target's appearance at
all. The second row shows the templates being updated every frame which
leads to the undesirable updates resulting in drift problem. . . . . . . . . . . 97

18



LIST OF FIGURES

3.6 The di�erent sparsity levels to determine if the target is occluded or reliable
to update. When st < ε2, it is safe to update the target template into the
dictionary, otherwise, it is too ricky to update. When the sparsity level st
exceeds ε1 value, that triggers the collaborative tracking process between
cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 The separative thresholding to con�rm the target's position to avoid drift
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 The star topology for collaborative multi-camera network. . . . . . . . . . . 100

3.9 Visual results with the yellow, blue and red boxes are respectively the
ground-truth, TLD [116] and our multi-view method. . . . . . . . . . . . . . 105

3.10 MOTA score in function of variance σxy. The performance of collaborative
star-network camera model shows its e�ciency on preventing error propa-
gation across camera network. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.11 Collaboration record between cameras in Sequence PETS09-S2L1 with dif-
ferent propagation values σxy. Rows indicate demands sending to other
cameras when occlusion occurs. Columns indicate demands receiving from
other cameras. The �gures on the left use the full graph model for collabo-
ration between cameras, those on the right use the star model described in
Fig. 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 The Markov Decision Process for a single SOT tracker. . . . . . . . . . . . . 111

4.2 Diagram of our multi-camera collaborative tracking approach . . . . . . . . 113

4.3 The identity 3 is occluded in the displayed view because of the road sign. In
this case, the person with identity 3 is detectable, but recognizable in the
actual view. By using multiple cameras, our method is able to reassign the
detection to the correct identity. . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Finding the corresponding targets in di�erent views. For visualization pur-
poses, we draw only edges between 2 successive views. We however stress
that edges connect targets between all the views. Edges in solid line con-
nect a target corresponding to the same identity, in di�erent views. In this
example, there are three connected subgraphs indicating three people in the
tracking process [132]. An example of the subgraph of a target can be seen
as the Fig. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Comparison between the optimal solution (a) and our fast heuristic (b). Note
that node v61 is included in the optimal solution, but not in the approximate
one, because v61 is not adjacent to the �xed node v52 [132]. . . . . . . . . . . 120

4.6 Comparison between the pointwise matching and Dynamic Time Warping
matching. Source: Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . 122

19



LIST OF FIGURES

4.7 The appearance of the target is represented by a template in a video frame
(a). In �gure (b), a set of sampled points {ui} inside the target in frame 50
matches to a set of points {vi} in the frame 51. The optical �ow is computed
from densely sampled points inside the target template to a new frame. The
quality of the �ow is used as a cue to make the decision: (b) an example
of stable prediction, meanwhile the divergence of matching point caused by
the unstable prediction (c). The yellow box is the predicted location of the
target. [229] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Visualization of the Deep Matching results on the MOT16 sequences [201].
The keypoints (i.e., cross masker) having the same color are the pairs of
deep matching between two images. . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 CNN-based appearance feature extraction with our modi�ed ResNet50 (ResNet')
and TriNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 The trajectory uncertainties in PETS09-S2L1 sequence (a) and terrace1
sequence (b). Figures (c) and (d) depict the uncertainties related to color
histogram features. Each color corresponds to a particular identity. . . . . . 127

4.11 Fields of view of the cameras in the PETS09-S2L1 sequence (a) and terrace1
sequence (b). The common overlapping zone has red contours. The rectangle
unit has a dimension of 5× 5 meters in the real world [132]. . . . . . . . . . 130

4.12 Performance comparison between the reference single-camera method [229]
and our multi-camera approach using IDF1 and MOTA scores. . . . . . . . 134

4.13 The Precision-Recall curves of di�erent feature for target clustering showing
the outperformance of trajectory or path feature over all others which are
based on appearance of targets. . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.14 The pipeline of our distance learning framework. The red arrow indicates
the direction during training process, meanwhile the blue lines for testing. . 137

4.15 Proposed distance learning neural net. The neural net consists of a CNN
backbone (e.g. ResNet50 in our case), which extract appearance features
from raw image, and a series of Fully Connected (FC) layers with ReLU
layers as activations. Model (a) with locations at the bottom of the deep
distance network, meanwhile, model (b) with locations at the second last
FC layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.16 Comparison between optimal transport plan (a) and assignment matrix (b) 142

A.1 Visualization of the multi-camera collaborative tracking results of PETS09-
S2L1 sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 Visualization of the MDP tracking results of PETS09-S2L1 sequence . . . . 160

A.3 Visualization of the multi-camera collaborative tracking results of Terrace1
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.4 Visualization of the MDP tracking results of Terrace1 sequence . . . . . . . 162

A.5 Visualization of the single-camera tracking results of PETS09-S2L2 sequence 163

20



LIST OF FIGURES

A.6 Visualization of the multi-camera collaborative tracking results of PETS09-
S2L2 sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

21



LIST OF FIGURES

22



Chapter 1

Introduction

1.1 Motivation

Since the last decades, technological advances in computers and cameras have brought
image technologies into many aspects of real life. With the easy accessibility to cameras and
massive data storage systems, single or multiple camera systems are built for many, either
civil or military applications. One of the most popular applications of camera systems is
security surveillance. Since the availability of camera systems, security surveillance with
camera systems has been widely deployed to prevent criminal activities in public or private
areas. Additionally, as the terror acts of extremist or terrorist groups have happened around
the world, especially for the last �ve years, and big cities such as New York, London, Paris,
Barcelona seemed to be the vulnerable targets. The public safety concern has been risen
at the highest level than ever. Consequently, the security camera surveillance system has
become so demanding and essential for police authorities to ensure the safety of their
citizens.

In practice, video surveillance systems have demonstrated their e�ectiveness to help
police force quickly identify and track down suspects or criminals in investigations. In 2013,
when the Boston bombing happened, the suspects have been identi�ed quickly because of
the video surveillance system in New York City. However, it took the law enforcement
force in Boston three years to �nally end this dramatic manhunt. In China, the authorities
deployed the SkyNet Project, a national surveillance system, which consists of more than
20 million cameras set up in public spaces and a massive computation center to process
millions of images a day gathered from those cameras. This surveillance system is expected
to detect in prior crimes that potentially happen in public and to observe the behavior of
their citizens, which is part of the social credit program in this country. A couple of years
ago, Amazon launched new stores in the US, which is named Amazon Go. The specialty
of this new kind of store is that shoppers are not required to check out when they leave.
Therefore, people do not have to wait in line; all that they need is to install Amazon Go
apps linking with a credit card, pick up their items, and walk out. A complex sensor system
in the store can detect when products are taken and returned to the shelves, meanwhile, a
camera network monitors their customers and add the products they picked to their virtual
cart on their phone apps. As we can see, the success of this initiative �rmly relies on its
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automatic surveillance camera system. Amazon Go stores have already opened in several
cities in the US, and Amazon wants to expand its future of retail in the UK soon. Beyond
land security, camera surveillance systems are used for marine safety, in which they are
usually installed on vessels or coast guard boats to observe any suspicious movement and
detect pirates or drug smuggling ships.

Besides the apparent advantages of security camera systems, there are several setbacks
such as most of the camera surveillance systems are centralized. In other words, this kind of
system comprises a network of cameras set up around outdoor or indoor spaces connecting
to a surveillance center where all video streams are gathered, recorded in a database. In
most cases, those videos are streamed directly on plenty of screens, and one or several
security agents watch all these screens to oversee the surveillance areas regularly. The
general architecture of camera surveillance systems is shown in the Figure 1.1.
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Monitoring live CCTV cameras

Data storage center

(recording videos)

Computation center

(processing videos)

CCTV cameras

Figure 1.1 � The general architecture of camera surveillance systems

However, a study in 2002 conducted by Brandon C. Welsh and David P. Farrington [222]
showed the ine�ectiveness of CCTV1 on reducing crimes. That is explained by the fact
that not all of those cameras are truly monitored. In reality, it is hard for one security
agent to watch over lots of screens in a long time. It is evident that by the end of the
day, they can be distracted and eventually miss events, which potentially leads to a crime.
On the other hand, in the case of reviewing all video records for crime investigation, fast-

1Closed-Circuit Television
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forwarding every single video is an exhausting and time-consuming work. In some cases,
to lower the cost of security, only several available screens are used to display all video
streams. The images from cameras are switched periodically and not always monitored
constantly. Another study on how security CCTV cameras impact crimes in the urban
environment led research on about 1000 camera networks [189] in Chicago city in 2013.
The e�ectiveness of surveillance cameras relies on whether they are being overseen.

As a result of the increasing demand for CCTV cameras for public safety, it is required
an automatic surveillance systems without adding more human resources. This system
involved three essential tasks, including detection, tracking, and re-identi�cation, which
are the aspects of the study of this thesis. Furthermore, there are many setbacks of current
surveillance systems that motivate this study. One of them is the privacy concern about
storing individuals' images without permission. Although we think that people who have
done nothing wrong should not be worried, most people who have been asked if video
surveillance systems are intruding their privacy, their answer is almost yes. Depending
on countries, the legislation on privacy protection might be di�erent. In China, the pri-
vacy concern does not seems to be a big issue, even though the international community
has strongly criticized its national surveillance system as such a human right violation.
Meanwhile, in Europe, the EU data protection rules, as known as the EU General Data
Protection Regulation (or GDPR) [51], was adopted by the European Parliament in 2016
to increase the transparency of businesses in data collection and to protect the privacy of
EU citizens. In general, the new EU data protection rules aim to give people the right to
know if their personal data is collected and also the right to suspend any data collection to
them or request their personal data. This new EU regulation makes a signi�cant impact on
video surveillance systems. Because most of these systems always collect images from cam-
eras and save them into a data storage center before that information being processed for
further tasks such as tracking, recognition, and re-identi�cation. Hence, this law adds more
requirements to surveillance systems, and it means that data storage should be suspended.
That forces surveillance camera systems to process video streams online.

With the rapid improvement of embedded systems in computational power and low
energy consumption in addition to low-cost cameras, the �intelligent cameras � or �smart
cameras� are de�ned as the cameras which can process end-user tasks (e.g., detection,
tracking, analyzing) themselves without transferring the video streams back to computa-
tion center. Unlike the conventional centralized system, a surveillance camera system built
by smart cameras technically ful�lls the aforementioned strict requirements on privacy. As
a distributed computing system, all raw information is processed locally by cameras them-
selves so that this sensitive information is not being transferred or spread into networks.
This means that no massive data centralized storing is required, and data are almost pro-
cessed online by each camera in the network. By computing data in a distributed way,
the smart camera system lowers the amount of necessary information transferring through
the network. Another convenience of this system is that cameras can work independently
or collaboratively within an unstable network connection such as wireless or mobile sig-
nals. Finally, with the capacity of operating on the existing IT infrastructure, this camera
system is not required any additional network for the surveillance system (e.g., IP cam-
eras), it is then easy to set up with a lower installation cost. Therefore, a distributed and
collaborative camera network to detect and track objects is the main focus of this thesis.
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Apart from security applications mentioned previously, videos from cameras are being
served for di�erent purposes, such as scene understanding. As one of the most crucial tasks
in video processing, tracking algorithms are not only used to follow the trace of an individual
for qualitative analysis but also to determine the group tracking for quantitative analysis.
The tracking results, i.e., the trajectories of the objects of interest in videos are served
as a relevant feature for automatic deeper analyses such as classifying videos in videos
databases (e.g., YouTube, DailyMotion), indexing scenes in movies on online streaming
movies services (e.g., Net�ix, Amazon Prime Video, Apple TV, Hulu) or monitoring tra�c
at a busy street intersections.

In addition to these above applications in real world, object detection and tracking
with cameras are a hot research topic for autonomous driving technologies that could
apply in future applications such as robo-taxi service. In self-driving systems, besides
the autonomous navigation part that drives unmanned vehicles on their road lanes and
follow their given itinerary, driverless cars essentially require a complex object detection
and tracking system with multiple sensors including radio-signal sensors and visual sensors
(i.e., cameras) to detect immediately any obstacle on the road in any weather condition.
Driving on the road does not just mean to drive from one point to another point in the city,
the car has to collaborate with other vehicles which are, at the same time, participating
on the tra�c. All vehicles have to follow the road safety rules such as recognizing road
signs, slowing down when approaching intersections or stopping at the red tra�c lights.
Driverless cars have to behave on the road independently and exactly as being driven
by human. Human being uses eyes to observe other cars, pedestrians, road signs on the
street, meanwhile driverless vehicles use cameras to do the same things. Processing video
streams from cameras, the computer system on this type of vehicles is required to detect
other vehicles and people in real time in order to recognize any abnormal movement on the
road to avoid accidents as early as possible. As the safety of customers is the priority of
any driverless car maker, object detection and tracking is an ultimate crucial task, which
is also the main focus of the manufacturers in order to prevent road accidents. Being a
leader in self-driving car industries, Tesla was the �rst automaker to release the autopilot
system on its electric car (Tesla Model S) in 2014. Despite the constant improvement of the
autopilot system, there have been crashes on the experiments of this new autopilot system.
The �rst known fatal car crash occurred in Florida on a night of May 2016. According
to the conclusion from the local authorities, the camera system was malfunctioning while
it did not recognize the victim crossing the street. In another experiment, Tesla released
a video showing its self-driving car has successfully tracked the front car and detected
its abnormal slow-down and the incident ahead, then stopped the vehicle to prevent the
follow-up accident. Those examples demonstrated that a detection and tracking system
plays a crucial role in self-driving vehicles (Fig. 1.2).

As all the reasons mentioned above motivate this study, the main objective of this
thesis is to develop novel methods of object detection and tracking via a network of col-
laborative and distributed cameras. The next sections detail the context of this study, the
remaining challenges in the �eld, the prior hypotheses �xing our case study as well as our
contributions.
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Figure 1.2 � Detection and tracking in self-driving cars

1.2 Context of study

As part of the LUMINEUX project, this study is funded by the Région Centre, France.
The LUMINEUX project focuses on the energy e�ciency of urban lighting and all the
following related overconsumption problems. The main goal of the LUMINEUX project is
to make urban and peri-urban lighting intelligent built from an embedded vision system
which can communicate between its units. This new system contributes to reducing the
costs of operating and protecting the environment by lowering energy consumption. The
goal of the project is to create an intelligent lighting system in cities based on the analysis of
the scene resulted from the vision system. Furthermore, this intelligent vision system aims
to detect and recognize abnormal, suspicious events in public place, e.g., road accidents,
crime scenes, tra�c violations. As a result, this project will expectedly improve road safety,
as well as public safety in general.

As one of the most ongoing and trendy problems in computer vision, automatic video
understanding and interpretation involve detection, tracking and recognition of objects
of interest which is one of the main focuses of this study. The state-of-the-art method-
ologies for video understanding are developed within a powerful system using a single
camera. Meanwhile, with the rapid expansion of cheap camera networks, collaborative and
distributed methods for video understanding are becoming more and more interesting re-
search topic. Hence, we aim at developing e�cient collaborative and distributed solutions
for network-based video understanding during this thesis. We are particularly interested
in the tracking problem and targeting at new robust algorithms which improve both track-
ing reliability on a single camera and overall understanding of the scene captured by the
camera network.

This research study entirely took place at the Laboratory of Fundamental and Applied
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Computer Science of Tours (french acronym: LIFAT) (EA 6300), L'école polytechnique de
Tours within the University of Tours, France.

1.3 Remaining challenges in object tracking

As mentioned previously, the goal of this study is to develop novel methods of object
detection and tracking within a distributed and collaborative camera network. Since the
last decade, there have been plenty of works on object detection and tracking by cameras
for surveillance purposes. However, this research topic is still having challenging problems.

First of all, to perform tracking tasks, the camera system has to detect objects of interest
at the �rst place when they enter the scene. In the literature on object detection or generic
object detection, there are many problems such as: building a consistent pattern for a
speci�c object; dealing with various shapes and textures of objects, tackling the variation
of one single object in size, scale and pose, the problems from objects themselves; and other
issues caused by environmental factors include camou�age (i.e., when the texture/color of
the background is quite similar to objects); bad lighting condition (e.g., detecting object
in the dark); or the error from recording devices (e.g., image distortion caused by camera
lenses, noise generated from image sensors).

In this thesis, we are particularly interested in vehicles and pedestrians for public
surveillance purposes. For street vehicles such as cars, trucks, the 3D appearance of them
are consistent and unchanged, but when being recorded in 2D images, their poses, which is
depending on the camera's angle and position, are directly impacting on its 2D appearance.
Meanwhile, people change their shape when moving. Furthermore, individuals' physical
appearance highly depends on their height, body, and clothing as well. Because of the
various surveillance systems, human poses can be a di�cult issue. For example, the camera
surveillance systems on public transports such as buses, trains, metros usually have the
top view in which the cameras mainly observe the heads of passengers.

One of the main factors impacting on the tracking performance of camera surveillance
systems is the constant environmental changes. Unlike the indoor camera system, the
camera surveillance systems in public places are deeply a�ected by the background scene
changes. These changes can be the change of lighting during day and night or caused by
weather (e.g., sunny or cloudy days) or the shadow of objects such as buildings, trees,
advertising billboards, or the lawn color changes (for example from green to yellow), tree
branches moving with winds. In outdoor cases, the color of targets is usually changed
by lighting conditions, for example, an individual walking out from the shade of a tree.
However, these environmental factors do not seem a�ecting detectors, but challenging the
re-identi�cation task later, because of the color change on targets.

Another critical problem in detection and tracking is occlusion. In surveillance videos,
targets are frequently hidden or covered by obstacles or other targets, especially in com-
plex or crowded scenes. Occlusion can be partial or total, and the hidden time of targets
is unknown. Straightforwardly, occlusions make detection and tracking tasks extremely
challenging and sometimes impossible (e.g., total occlusions). Many methods try connect-
ing two instances of targets (i.e., the moments in which targets disappear and reappear
during the occlusion period) based on general movement patterns such as velocity, recorded
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paths. Using movement patterns to interpret missing paths of individuals is practical in
speci�c surveillance scenes, such as train stations, airports, where the �ow of people gen-
erally moves from entries to exits. Although applying these types of motion patterns can
possibly improve tracking scores in terms of quantity, it seems neglectful with abnormal
and unprecedented movements, which are usually seen in criminal activities, for example,
a suspect does not move toward any speci�c destination point. Apparently, these patterns
introduce a path model to adapt to maximum people (i.e., inliers) but ignore the small
portion whom the security service particularly wants to monitor (i.e., outliers). As the
above explications, occlusion problems inevitably cannot be solved in implicit ways, so it
remains a challenging problem in detection and tracking.

The follow-up challenge when resolving occlusion problems is how to manage to track
multiple targets simultaneously. As individuals usually disappear and reappear multiple
times through the entire surveillance video, in order to track those individuals, online
tracking algorithms have to relink their appearances every time they reappear on the scene.
Therefore, in the online tracking scenario where we consistently and continuously track
targets, tracking algorithms are required to pause and resume multiple times corresponding
to occlusions. Otherwise, if online tracking is not a requirement, tracking tasks relates to
re-identi�cation closely.

The last issue related directly to practical implementations on intelligent cameras is
the processing time. For every embedded system, processing tasks must be done within
the real-time constraint that is the priority. As we often see in many tracking methods, the
accuracy of tracking algorithms is being traded o� with their complexity. However, this
thesis does not try to cover this issue. In the next section, we clarify all the hypotheses
and constraints for our detection and tracking problem with multiple cameras.

1.4 Hypotheses and constraints

Developing intelligent multi-camera video surveillance systems is a multidisciplinary
�eld related to computer vision, pattern recognition, signal processing, communication,
embedded computing, and image sensors [194]. Figure 1.3 illustrates the involved disci-
plines for smart camera networks. Generic multiple object tracking in multiple views for
smart camera system is a large and complex problem. Therefore, the more constraints are
imposed, the more feasible tracking tasks are.

In this thesis, we mainly focus on the computer vision domain and all related distributed
algorithms; hence, we explicitly detail below the list of hypotheses and constraints which
de�ne our case study:

• Camera calibration, also referred to as camera resectioning, is a process of esti-
mating the parameters of a pinhole camera that produces images or videos. These
camera parameters are used to correct lens distortion, which are seen captured im-
ages, determine image point location in world coordinates, measure the size of the
object, or �nd the camera's position. In general, camera calibration is a task of �nd-
ing a mathematic model that links the 3-dimensional location of the points of interest
in real-world to 2-dimensional image coordinates corresponding to those points. In

29



1.4. HYPOTHESES AND CONSTRAINTS

Image sensors

• Rich information

• Low power, low cost

Sensor networks
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• Networking
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• Object detection

• Scene understanding

Smart Camera
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Figure 1.3 � Convergence of disciplines for smart camera networks: image sensors, sensor
networks, signal processing for embedded computing, and computer vision [194].

the context of multiple cameras that we are working on, calibrating those cameras is
an essential step before making them share their tracking results. In the literature
on camera calibration, there are many baseline methods such as Direct linear trans-
formation method, Tsai's method [206], Zhang's method [245]. However, seeing that
camera calibration is also one of the main topics in computer vision, this study does
not address the camera calibration problem. Therefore, we assume that all calibra-
tion information are available to determine the real-world 3D position of every point
on the image plane, and vice versa, the 2D image position of every point on the real
world.

• Camera synchronization is a process of synchronizing the time of capturing images
from di�erent cameras. Many computer vision applications require to capture a scene
from di�erent points of view, and with a dynamic scene like tracking videos in this
study, every frame from cameras needs to be taken at the same time. Synchronizing
camera networks involves many synchronizing steps from image-capturing time to
the latency of the network. To simplify our case study, we suppose that all cameras
are perfectly synchronized.

• Static camera is the subject of our study where cameras are �xed at speci�c
locations to �lm the surveillance areas. In practice, the dynamic cameras (e.g.,
pan�tilt�zoom (PTZ) camera) are also commonly used in surveillance, and those
dynamic cameras involve many other research disciplines such as robotics, control,
automation. However, in order to limit our research area and focus on one �eld, we
only consider the static cameras in this study.

• Overlapping-view cameras is one of main constraints in our study. As mentioned
before, the occlusion problem is still an unanswered question in tracking objects
within a single camera. Using multiple cameras observing the same scene but from
di�erent angles and positions can technically resolve this issue because when a target
is being occluded in one view, it is possibly observable in other views.
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• Unlimited computing capacity is the hypothesis supposed on each distributed
camera what we are working on.

• Online tracking and distributed algorithmn are our two last constraints. As one
of the reasons mentioned above, there is no data storage center required to record all
surveillance videos; we are, hence, interested in creating distributed tracking camera
systems. This means that all tracking tasks have to be processed online on cameras
themselves before collaborating with other cameras in the network.

1.5 Contributions

In this section, we brie�y summarize our contribution of this thesis.

• Our �rst contribution is a robust multi-camera tracking framework for the sparse
tracking single view methods by extending the particle �lter on a common tracking
ground-plane to adapt the multi-view tracking context. The multiple cameras frame-
work allows detecting local appearance variation in a single view and the tracking
task switching between cameras in the network. The research result is published
in the conference Reconnaissance des Formes, Image, Apprentissage et Perception
(RFIAP) 2018, Paris, France.

• We adapt an MDP Multiple Object Tracking framework to a multiple overlapping,
calibrated, and frame-synchronized camera setting. The problem of associating tar-
gets across cameras is modeled, in each frame, by a graph-based approach for which
we propose a fast approximate solution. We further exploit multiple views to deal
with occlusions and to recover targets' identities, thus to improve the overall iden-
tity score. Another essential aspect that we address concerns with the a�nity score
used in the association step. We propose a robust similarity function consisting of
a �trajectory� a�nity and a given appearance a�nity function that are used to link
targets in di�erent views. This research result is published in the Vision for Interac-
tion and Behaviour undErstanding (VIBE) workshop of the British Machine Vision
Conference (BMVC) 2018, Newcastle Upon Type, UK.

• We review several appearance similarities in the state-of-the-art propose a method to
combine these appearance features with trajectories as a robust similarity measure
for target association across views and �nally conduct an exhaustive analysis on the
impact of these functions on �nal results. This research result is presented in the
conference ACM/SIGAPP Symposium On Applied Computing 2020, Brno, Czech
Republic.

• As another major contribution to the target association problem between di�erent
views within an overlapping camera system for online MTMC tracking applications,
we reformulate the association problem between two cameras as an Optimal Trans-
port (OT) problem. In order to deal with the potentially varying number of targets,
we leverage recent advances in the unbalanced formulation of Optimal Transport.
Furthermore, we propose to learn the ground cost used in the OT formulation. This
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learning aims at devising a ground cost that yields the optimal association accuracy.
It leads to a learning algorithm that evaluates the gradient of the loss function by
automatic di�erentiations through the iterates of an OT solver. We �nally adapt
the target association framework between two cameras to the context of multiple
cameras. This work is presented in a workshop of the 25th International Conference
on Pattern Recognition (ICPR), Milan, Italy.

1.6 Plan of thesis

In this section, we present our thesis plan. Indeed, this thesis is generally divided into
six chapters: introduction, state-of-the-arts approaches, sparse coding for collaborative
tracking mono-object in multi-view, multiple object tracking: target association across
multiple cameras, and �nally conclusions and perspectives.

• The �rst chapter, i.e., this chapter, states the motivation of object tracking research
and its real-life applications. We mention the context of this thesis, then remind the
remaining challenges in visual object tracking. Next, we declare all hypotheses and
constraints that we use to conduct this study and brie�y list our main contributions.
The �nal part is the outline of the document to show the structure of this dissertation.

• Chapter 2 includes state-of-the-art approaches that are carefully separated into �ve
parts corresponding to the main steps in the tracking process. The �rst part cov-
ers generic object detection methods, which include the classic approaches and the
modern approaches based on deep learning techniques with the image datasets. The
second part is a brief literature on appearance feature extraction for object tracking.
The third part reviews the single object tracking methods in the state-of-the-arts
consisting of the classic approaches from the '90s until 2008, the methods using
sparse coding for appearance modeling, those bene�ting the computing speed from
correlation �lters and the approaches based on deep learning with the introduction of
Siamese networks. The forth and �fth parts present the literature on tracking multiple
objects in a single view and multiple views based on either Single Object Tracking
methods or Tracking-by-Detection approaches. Finally, the last part presents the
benchmarks and performance measures, which are commonly used in the multiple
object tracking community.

• Chapter 3 details our contributions to a mono-object sparse coding tracking method
based on particle �lters for a collaborative and distributed camera network. Our
framework for multiple cameras applies the particle �ltering strategy for target search-
ing, which is a common tool in Single Object Tracking methods in the literature. Our
framework introduces a novel way to detect occlusion events based on sparse cod-
ing for further camera collaboration. The tracking results are transferred back and
forth between pairs of cameras in the distributed camera network to continuously
track their target even with occlusion events happening in some views. The tracking
results are compared with the state-of-the-art single view approaches.

• Chapter 4 presents in detail our second contribution, which is an online robust multi-
view tracking method for a collaborative and distributed camera network. The chap-
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ter is divided into three sections. The �rst section describes our multiple camera
multiple object tracking framework, which supports Single Object Tracking methods
to implement to track many targets in the context of multi-view tracking simultane-
ously. The second section details our data association method to associate targets
across cameras based on the appearance and trajectory of targets. Along with tra-
jectories, many appearance features used to measure the similarity between targets
across views are studied. Numerous experiments on di�erent con�gurations with
di�erent similarity measures are carried out in comparison with the original single-
view approach. The tracking results are validated on the common videos multi-view
databases with the standard performance scores, including MOT and ID-measure
scores. The third section begins with the problem of combining multiple features to
di�erentiate targets across di�erent cameras. Addressing this problem, we propose
the second target association method for pairs of cameras by reformulating it as an
Unbalanced Optimal Transport problem. This approach considers associating targets
in one view to those in another as �nding an optimal transport plan which transports
an empirical distribution to another one with a minimum transport cost. The trans-
port ground cost is deduced from a distance between two distributions. We use a
deep neural network to encode the trajectory and appearance of targets for learning
the metric distance in the OT problem. The novel target association method is well
adapted to our multi-camera tracking framework. The experiments are conducted on
standard benchmarks to compare the performance of both data association methods.

• Chapter 5 concludes the thesis, discusses the remaining challenges in multi-view
multi-target tracking, develops the other perspectives on this tracking problem with
new initiatives to tackle problems, �nally talks about the current and future appli-
cations in the real world.
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Chapter 2

State of the Art

2.1 Object detection

Object detection is one of the fundamental problems in computer vision. Its applica-
tions widely range from simple tasks such as recognizing and identifying objects to more
complex tasks such as tracking mobile objects in autonomous driving or surveillance track-
ing. The goal of object detection is, given categories, e.g., human, car, pets, to determine
whether or not they are in an image and their positions.

2.1.1 Classic methods and image datasets

The history of object detection can be divided into two periods: The �rst classic ap-
proaches from 1999 until 2012, and the machine learning techniques since 2012. The most
preliminary challenge in computer vision is to detect objects in images. The object detec-
tion research achieved a milestone when Lowe [149] released the Scale Invariant Feature
Transform method (SIFT) in 1999, which can �nd identical objects with the corresponding
matches to a given one. This method gives remarkable robustness concerning translation,
rotation, illumination, and viewpoint. However, the problem remaining is to match the
objects belonging to the same category but not identical, e.g., grouping image of cups
which are taken from di�erent cups.

The Lowe's method [149] inspired the object detection community with his invariant
keypoints resisting the changes in scale, rotation, viewpoint, and illumination, then the
detection trend shifted from �nding global appearance features (e.g., shapes, structures,
color) to focusing on local descriptors. Since then, �nding handcrafted local invariant
descriptors had become a popular trend. These local descriptors include Haar features [211],
SIFT [148], Histogram of Gradients HOG [55] and Local Binary Pattern (LBP) [164]. After
obtaining these features, they are usually concatenated into a vector or transformed into a
latent space, such as Bag of Words [131], Deformable Part Model [77], where they can be
classi�ed by a supervised method, e.g., Support Vector Machine (SVM) [49]. In 2011, as a
remarkable contribution to object localization, the selective search for object recognition
by Van de Sande et al. [207] had a strong in�uence on the later methods. Although
object detection algorithms have addressed the searching object problem with noticeable
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results, it remained a question: Can computers detect objects in an image without knowing
what is inside? The object detection challenge has become much harder since we required a
complete automated object recognition process. This task is called generic object detection.
Given a large number of images, the challenge of object detection is to determine what is
inside and where it is. The following subsection is about deep learning approaches that
answered the above question.

Additionally, during this period, PASCAL Visual Object Classes (well-known as PAS-
CAL VOC [74]) was released in 2007 to contribute a large dataset and a fair comparison
for all state-of-the-art methods. A couple of years later, Wang et al. [67] also published
the �rst large-scale image dataset in 2009. These enormous image datasets are the prior
elements for the advancements of deep learning techniques in the following decades.

2.1.2 Deep learning methods

Machine learning techniques have been developed in the 1990s with few applications
due to the limitation of computational power and data. One of the most relevant ap-
plications in vision is the digit recognition algorithm with the MNIST handwritten digit
database and the birth of Convolutional Neural Network (CNN) by LeCun et al. [135] in
1998. Since then, there were very few machine learning approaches addressing computer
vision problems until 2012 when Krizhevsky et al. [127] released their method with their
GPU implementation. They built a neural network structure using multiple convolutional
blocks, trained the entire neural network on GPU, and gave a breaking performance on
imageNet [67]. By taking advantage of the parallel computational power on GPU, the im-
plementation was able to train a bigger CNN structure from a massive training data in a
reasonable time. Since AlexNet [127] was the board leader of ImageNet Challenge in 2012,
deep learning techniques received lots of attention from the community, and it has emerged
as a promising method for a powerful feature representation with an end-to-end learning
approach. Its accuracy crucially relies on the volume of training dataset and the depth
of the neural network [99]. Because of the availability of large scale image datasets such
as ImageNet[67], PASCAL VOC[74], MS COCO[143], the accuracy of deep learning ob-
ject detection algorithms dramatically increased and overpassed human performance [145].
According to the neural network architectures, the state-of-the-art deep learning object de-
tection methods can be separated into two categories [145]: two-stage detection approaches
and one-stage detection approaches.

2.1.2.1 Two-stage methods

The main idea of this type of method is to pre-process images to propose the Region
of Interest (RoI) and then recognize the object from wrapped image patches extracted
from the RoI. Indeed, the pre-processing step primarily aims to localize objects, and then
the main detection step labels these given regions by a speci�c classi�er. Following this
detection scheme, Girshick et al. [88] proposed the Region-based Convolutional Neural
Network (RCNN) consisting of one region proposal step via Selective Search [207] and one
neural network to label each region proposals. Notice that the Neural Network includes:
the convolutional blocks serving as a feature extractor and a single/multi-class classi�er
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such as C-SVM. Image patches used as an input of the CNN are cropped from proposal
regions and rescaled to have the same size. CNN models are pretrained using multiple
image datasets such as ImageNet [67], PASCAL VOC[74] or MS COCO[143].

Observing an inconvenience that the RCNN [88] only accepts an unique-size image
input while the CNN block can get the arbitrary size, He et al. [98] inserted an SPP
(Spatial Pyramid Pooling) layer, which aims to obtain �xed-length features, between the
CNN block and the Fully Connected (FC) layers. The most signi�cant disadvantage of
these above methods is that detecting multiple objects in a single image means we need to
feed the network multiple times. Repeating this process slows down the algorithm, and it is
not an e�ective way to detect many objects, because in most cases, the objects are usually
superimposed on each other, and theROIs share the same regions. In 2015, Girshick [87]
introduced the Fast RCNN, which applies the Selective Search at the last CNN layer to
extract features of RoI, called feature map, before entering to the FC layers. This manner
helps the algorithm bene�t from the sharing computation of convolution since the input
of Fast RCNN is an arbitrary-size image comparing with multiple extracted regions in the
older version RCNN [88]. Meanwhile, instead of using the Selective Search [207] to obtain
RoI, the Faster RCNN proposed by Ren et al. [176] uses a Regional Proposal Network
(RPN) which takes the feature map as the inputs (i.e., the output of the last CNN layer)
for each spatial location, e.g., objectness classi�cation, bounding box regressor. The RPN
helps the network run faster in terms of magnitude [176] and retain su�cient geometric
information for accurate object detection [136] as well.

Inspired by Fully Convolutional Network (FCN) for semantic segmentation [147], Dai
et al. [54] introduced the Region-based Fully Convolutional Network (RFCN), which helps
to minimize the amount of computation that cannot be shared. Indeed, the FC layers in
classi�cation are pinned to the head of the feature maps and convolutionalized [147] to
be able to accept more than a �xed-size image input, then the feature maps go through
these FC layers to generate position-sensitive score maps. Finally, each RoI extracted from
these maps gets through a multi-class classi�er for the type of object and a Bounding Box
regressor for the �nal localization. Some extensions of RCNN such as Mask RCNN [97],
Light Head RCNN [142] signi�cantly improved the speed and accuracy of RCNN for object
detection. Recently, to improve the accuracy of bounding box localization, Jiang et al. [113]
proposed IoU-Net as an alternative optimization-based bounding box re�nement for other
deep object detection methods. Figures 2.1 summarizes the development of two-stage deep
learning methods of object detection.

2.1.2.2 One-stage methods

Unlike the region-based (or two-stage) strategy, this approach uses one CNN architec-
ture to localize objects' positions via a bounding box o�set and predict class probabilities
without any additional ( region proposal) searching step. This setting only needs a single
feed forward CNN network to obtain results directly. Therefore, this elegant and straight-
forward end-to-end detection pipeline can be directly optimized on detection performance
during the training phase. The very �rst work implementing this idea is the DetectorNet
by Szegedy et al. [197] in 2013. In detail, their idea to localize objects on an image is to
quantize input image into multiple cells of a �xed-size grid, called coarse grid, and then
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Figure 2.1 � Summary of the two-stage deep learning methods in object detection[145].
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Figure 2.2 � Summary of one-stage deep dearning approaches in object detection [145].

determine which cells contain objects, i.e., foreground and which does not, i.e., background.
They used AlexNet [127] with a regressor on the top of the prediction masks, which are, by
de�nition, the cells that mostly overlap with the bounding boxes of objects. Accordingly,
these masks are fed to a series of CNNs to obtain the object's bounding box. The disad-
vantage of this method is that this procedure repeats multiple times at di�erent scales to
detect objects of di�erent sizes. Meanwhile, Sermannet et al. [188] proposed OverFeat with
a deep convolution network performing object detection in a multi-scale window sliding.
Practically, in the training phase, the CNN is applied on an image patch and produces
one single output, while in the testing phase, applying on a larger image results in a fea-
ture map. They naturally share computation between one-pixel sliding windows. As the
output of the classi�er, the feature map, which indicates on each pixel a class and its con-
�dence score, enters into a regression network to predict the bounding box. This method
is advantageous in terms of speed, but trades o� accuracy compared with RCNN [88].

Having a similar idea of DetectorNet [197] to localize objects on the coarse grid of the
input image, Redmon et al. [173] introduced YOLO (You Only Look Once) which is a
simpler model. YOLO possesses a novel CNN structure that uni�es object classi�cation
and bounding box regression within a single architecture. The method directly predicts
objects from candidate regions or grid cells, which is actually equivalent to the marks in
the DetectorNet paper [197]. In detail, YOLO divides input images into a S × S grid,
each cell predicts only one object via a �xed number of di�erent shape bounding boxes
containing box location {x-o�set, y-o�set, width, height}, B box con�dence scores and C
conditional class probabilites. Hence, YOLO's output has a shape (S, S,B × 5 + C). Unlike
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OverFeat [188], the searching space of YOLO is greatly smaller, explicitly S × S ×B × 5.
Eliminating region proposal step and having a limited space search, YOLO can run very
fast and exceed far the real-time requirement. As a setback of this method, the accuracy of
YOLO is relatively low, it sometimes fails because objects are too small or there are so many
of them due to the �xed-size grid. Later, Redmon and Farhadi [174] released YOLOv2,
which achieved state-of-the-art performance with 9000 object categories (YOLO9000) while
still running in real-time. The illustration of YOLO approach is shown in Figure 2.3

...

Cell (1, 1)

...

Cell (S, S)

YOLO

Cell (i, j)

 

(box + objectness)
(x, y, w, h)  + Con idence score B 

 

(box + objectness)
(x, y, w, h)  + Con idence score B 

C
o

n
d

itio
n

a
l cla

ss 

p
ro

b
a

b
ilite

s C
 

Figure 2.3 � Illustration of YOLO detection object approach [197].

Following the single-stage detection scheme, Liu et al. [146] introduced Single Shot
Detector (SSD), which e�ciently combines the idea of RPN (Regional Proposal Network)
from Faster RCNN and cascaded CNN blocks to obtain multi-scale feature maps. Indeed,
the SDD consists of a common feature extracting CNN network, such as VGG [193] followed
by a series of CNN networks. Accordingly, the feature map from VGG goes through many
multi-scale cascading CNN blocks. After going through each CNN block, the feature maps
gradually decreases in size and detail of information. Thus, the �rst CNN blocks detect
small objects, while others detect for the larger ones. In practice, SDD has comparable
accuracy with the state-of-the-art detectors such as RCNN [88] or Faster RCNN [176],
while having a higher speed in comparison with YOLO [173]. Figure 2.2 summarizes the
one-stage deep learning approaches in object detection.
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subtrack 1 subtrack 2 subtrack 3

Time

Figure 2.4 � The challenges while observing a target from di�erent views: the width-height
ratio of a standard bounding box is �xed while this ratio can be changed in a di�erent view
like from high altitude; the lighting condition e�ecting to the color pattern inside bounding
box of target [40].

2.2 Appearance feature extraction for object tracking

In pattern recognition, extracting feature is a crucial step, which aims to measure
the similarity or dissimilarity between known things especially in object detection, object
tracking or re-identi�cation. As mentioned in the previous section, object detectors use
appearance features to classify an object into known categories. For object tracking task or
human re-identi�cation task with multiple objects belonging to same categories, appearance
feature is used to discriminate an object instance from other objects in the same class.
Within most surveillance applications, people and vehicles are the two main targets. There
are several signi�cant challenges to identify these targets among multiple detections. The
�rst challenge is to deal with the mix of targets and the background, due to the rectangular
shape of detections, i.e., bounding boxes. For the detections of vehicles, the rectangular
shape well adapts to the car shape, the background zone inside of the box is relatively
minor and negligible, but it is not well-shaped to adapt articulating objects like human
body.

In this section, we mainly focus on the most common appearance features used to track
people in the literature. Firstly, as many detectors do not release well-cropped bounding
boxes, which might contain the background rather than its target, in reality, around 50%
to 60% its surface is the background, the remaining is the body parts. Secondly, a single
target can have many di�erent poses, e.g., the front, behind, side, or even top. Lastly, the
lighting condition has a huge impact on the appearance consistency of targets, especially
color. This is caused by either weather conditions or di�erent color sensors of di�erent
cameras. The illustration of these challenges is depicted in Figure 2.4.

The appearance of a human can be described by various patterns, but the most common
one is color that is widely used in many papers (Cai and Medioni [34], Chen et al. [39, 41,
40], Das et al. [62], Gilbert and Bowden [86], Javed et al. [110], Jiuqing and Li [214], Kuo
et al. [129], Zhang et al. [239, 240]). The color features can take many forms, but the most
useful and simplest one is the color histogram with di�erent color models such as RGB (Red,
Green, Blue), CMYK (Cyan, Magenta, Yellow, Black), HSL (Hue, Saturation, Lightness)
and HSV (Hue, Saturation, Value). The texture of targets is also a good indicator (Cai
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Figure 2.5 � Human body being encoded separately into two main parts: torso and legs [40]

and Medioni [34]; Chen et al. [40]; Daliyot and Netanyahu [56]; Kuo et al. [129]; Zhang et
al. [239, 240]).

Lighting variations or illumination changes are mitigated by enhancing the color his-
togram with normalization (Cai and Medioni [34]), using exemplar-based approaches (Chen
et al. [40]), or Brightness Transfer Functions (BTF) learned with (Das et al. [62], Javed
et al. [110]) or without supervision (Chen et al. [39], Gilbert and Bowden [86], Zhang et
al. [239, 240]). The histogram of oriented gradients (HOG) [55], which can resist to lighting
variations, is also a common features to extract the appearance of objects.

Furthermore, to improve the appearance model, human parts can be encoded separately,
such as torso versus legs (see in Figure 2.5). Meanwhile, in the aspect of a non-rigid object
type, moving people have their limbs gradually articulating around their main body parts
through successive frames, Deformable Part Model (DPM) introduced by Felzenszwalb et
al. [77] are commonly used to model human body in tracking videos. There are also other
attempts to combine both human body detector with facial detectors [37, 103]. Proposing a
generic object descriptor, Choi [45] introduced Near-Online Multi-target Tracking (NOMT)
approach with the Aggregated Local Flow Descriptor (ALFD) that aggregates multiple
local Interest Point Trajectories (IPTs) which, by de�nition, are the matching points found
by local interest point detectors between two detections via optical �ow algorithms [28].
The author also presented a hierarchical a�nity measures based on IPTs between two
detections. By incorporating the ALFD with a motion/appearance model, the tracker has
the ability to run in real-time with high accuracy. However, the tracking results are delayed
a certain frames due to the Multiple Hypotheses Tracking (MHT) process, which is used
to determine the best hypotheses (trajectories).

Besides the hand-crafted appearance features, many papers [75, 154, 155, 182, 243]
deployed sparse coding techniques for target's appearance representation. Mei et al. [154]
�rst introduced spare coding for appearance representation in vehicle tracking. There are
many works [155, 241, 144, 112, 12, 250, 217, 182, 243, 233, 215, 242, 238] following up to
enchance the ability to represent targets' appearance changes in videos. Extending spare
coding in multiple tracking object cases, Fagot-Bouquet et al. [75] proposed a formula-
tion of the multi-frame data association step as an energy minimization problem with an
optimization energy that e�ciently exploits sparse representations of all detections.
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The enhancement of appearance models is also achieved by reinforcing the discrimina-
tiveness of the selected features. Martinel et al. [152] proposed using saliency information.
Zhao et al. [246], Cai and Medioni [34], Chen et al. [40], Daliyot and Netanyahu [56], Das
et al. [62], Jiuqing and Li [214], Kuo et al. [129] learn speci�c features on body parts or in
the image such as Bedagkar-Gala and Shah [17, 18], Cheng et al. [43] Meanwhile, several
papers encode the appearance features on an articulated (Baltieri et al. [9], Cheng and
Cristani [42]) or monolithic (Baltieri et al. [10]) 3D body model. Long Short-Term Mem-
ory (LSTM) combining with the extracted features from CNN by Sadeghian et al. [184] is
used to adapt the evolving body parts while discriminating the background during videos.

The appearance features have been studied intensively in the re-identi�cation com-
munity. They focus on how to distinguish di�erent people in a collection of detections.
The recent literature in person re-identi�cation relies mainly on deep learning techniques,
which has been showing their simplicity and high performance in visual representation this
decade.

2.3 Single-object tracking

Visual object tracking is one of the long-standing research �elds in computer vision.
Primarily, tracking a single object is the most fundamental task in visual tracking. There-
fore, in this section, we discuss the classic and modern single object tracking methods of
the state-of-the-art. The history of the development of single object trackers is depicted in
Figure 2.6
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Figure 2.6 � Development of Single Object Tracking methods. There are four main ap-
proaches in Single Object Tracking: classic (orange), sparse-coding based (blue), correlation
�lter (green), and deep learning (violet) approaches.

2.3.1 Classic methods

Most visual object tracking approaches are generally presented in multiple steps, which
are shown in Figure 2.7. The scheme of visual object tracking approaches consists of
�nding suitable appearance representations for objects of interest, searching targets in the
successive images, estimating object's positions, and updating appearance models.

A variety of object modeling approaches have been proposed due to di�erent types of

43



2.3. SINGLE-OBJECT TRACKING

Appearance
representation

Input Image

Searching
Target

Updating
Model

Tracking Result

extract RoI

Figure 2.7 � General scheme of Single Object Tracking approach

objects, which are mainly divided into two classes: rigid and non-rigid (or articulated) ob-
jects. Rigid-body objects generally do not have any deformation during their movements,
concisely, their shapes remain unchanged while moving, but their visual appearance can
change in di�erent points of views. In practice, tracking applications are interested in
rigid-body objects like vehicles such as cars, airplanes, boats. On the contrary, articulated
objects are more complex and harder for modeling as their sub-body parts move around
their main body during movements. This causes their appearance to change frequently in
video sequences. In a survey of Yilmaz et al. [234], the classic object representation includes
keypoints, centroid, skeleton model, bounding box, object contour, and object silhouette.
Keypoints, centroid, and primitive shapes, polygons are commonly deployed to track rigid
objects which have a particular shape or texture. Meanwhile, object contour, silhouette,
and skeleton are used for non-rigid objects such as pedestrians, animals. Object represen-
tation is described via appearance extracted from the bounding box. These appearance
representations consist of: appearance features, e.g., color, textures, templates, e.g., image
patches of the objects, active appearance models, e.g., landmarks on the boundary and
inside objects, multi-view appearance models which can encode object's appearance from
di�erent views. In most of the state-of-the-art approaches, bounding box is the simplest
and most commonly used among these above object models. Due to the popularity of the
bounding box in tracking, the appearance model of object tracking is usually replaced by
the term �appearance features�, which are the visual features extracted inside the bounding
box containing the object. Indeed, appearance features intensify the uniqueness of objects
through the whole video.

Initially, in classic tracking approaches [234], several common features are deployed
such as color which is decomposed into three channels RGB in image processing, or some-
times HSV (Hue, Saturation, Value); optical �ow which is a dense displacement �eld of
keypoints which depicts the motion of the objects (e.g., Lucas and Kanade (LK) [150]);
texture which is the visual variation on the surface of the object. However, the LK approach
does not consider the entire appearance of targets, which leads to the poor performance
of those trackers. In practice, objects' appearance frequently changes during the tracking
process, speci�cally in the case of non-rigid objects, due to the change of camera's POV,
or the illumination on the scene and so on. Multiple learning-based methods have been
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proposed to adapt to the object's appearance variations e�ciently. In the paper of Ross et
al. [181], the appearance of objects is represented by a low-dimensional subspace, and this
representation is incrementally updated every frame. This method showed its capacity to
adapt to the variation of the target's appearance, but its drawback is that its intensive
updating causes the drift problem, which is observed when the appearance templates drift
out of the target after a long enough tracking time [153]. Since updated image patches
might contain tiny translation errors, these errors are accumulated through a time pe-
riod and become signi�cant �nally. To cope with this issue, Grabner et al. [90] proposed
a discriminative approach (OAB-Online AdaBoost tracker), which formulates the initial
tracking problem as a classi�cation problem. A set of candidates is sampled around the
target's position obtained from the last frame. Then they are divided into two groups:
positive samples and negative samples. The classi�ers are learned to distinguish the target
(positive samples) from the background (negative samples). However, this method cannot
help the tracker altogether avoid updating the templates obtained from inaccurate tracking
results. To address the drift problem, Grabner et al. [91] introduced the semi-supervised
boosting method, which combines a given prior and an online classi�er. In the Multiple
Instance Learning (MIL) method by Babenko et al. [7], ambiguous positive and negative
samples are put into two bags (i.e., bag-of-word) to learn a discriminative classi�er. The
intuition behind is that the positive samples are generated relatively close to the target's
center, while the negative ones are barred from the center with a �xed distance. This
keeps the tracker from updating the samples, which are too close to the barrier of negative
samples. Zhong et al. [250] used this type of discriminative classi�ers and combined it with
a generative model. A common point of all these algorithms is to provide an appearance
model that has both the discriminative ability and robustness; however, balancing between
those goals seems problematic.

In terms of localizing objects, object detection also aims to �nd the location of the
object of interest in images, but the searching mechanism makes tracking algorithms dif-
ferent. Tracking algorithms would rather search its target in the Region of Interest (RoI)
based on its last position than scanning on the entire image. According to the survey of
Yilmaz et al. [234], object tracking methods or search methods are divided into 3 categories:
point tracking, Kernel tracking and silhouette tracking. The �rst catergory is separated
into deterministic methods [210, 186] and statical methods such as Kalman �lter [30],
Joint Probalistic Data Association Filter (JPDAF) [14, 172], particle �lter [109]. Having
seen the particle �lter as the most common technique in many Single Object Tracking
approaches, as well as ours, we will detail this technique in Sec. 3.1. In kernel tracking
approaches, there are several relevant papers based on appearance models, e.g. Mean-
shift [48], KLT [190], Eigentracking [25]. Recently, many trackers have risen by applying
dense searching approaches while resulting in impressive performance such as correlation
�lter trackers [26, 102], which will be discussed in the next section.

Besides designing a good appearance model, another e�cient way to handle appearance
variation is to update the appearance model frequently. Initially, the update mechanism is
developed to combine the reference template of the target at the beginning of the tracking
process with the most recent tracking results [153]. Since then, there have been other
di�erent update approaches depending on the appearance model of trackers such as online
boosting [90], online mixture model [111], and incremental subspace update [181]. With the
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discriminative model, such as [7, 95], the trackers update the appearance model by training
an online classi�er as supervised learning every frame. Meanwhile, the methods in [91, 115]
reformulated the online supervised classi�er update as semi-unsupervised learning.

In terms of object detection at the �rst frame, this step is called "Initialization" (or "re-
initialization" for reestablishing the tracking process when failing). This task can be done
manually or automatically. Regarding to the automatic mode, moving object detection can
be addressed by generic object detection which has been described in the previous section.
In the case of the invariant and simple scene, objects can be extracted by background
subtraction approaches [81], segmentation approaches [32, 158] or SVM, e.g. Adaboost
framework by Viola et al. [212]. There was an exhautive survey on the Single Object
Tracking methods conducted by Wu et al. [228] in 2013. In the next section, we detail an
e�cient approach to represent the appearance of objects via sparse representation.

2.3.2 Sparse coding based methods

Sparse coding has shown its e�ciency in visual representation [72] and attracted at-
tention from the computer vision community. In this section, we discuss the sparse coding
techniques used in computer vision, especially visual tracking. In principle, sparse coding
is a method of signal representation. A signal can be represented as a linear combination
of a large number of di�erent signals with the same dimension, which form a redundant
matrix. Since the number of columns is much higher than row's, the linear combination of
the basic signals in the redundant matrix representing the original signal can be presented
by an in�nity number of coe�cient vectors, i.e., the underdetermined system. With refer-
ence to sparse coding, only the coe�cient vector, which has the least non-zero elements,
is considered as the solution, the original signal now is being represented by a few sig-
nals in the redundant matrix. For applications, sparse coding is commonly used in image
processing [151], such as denoising, deblurring, resolution increasing. In computer vision
applications, the �rst remarkable work using sparse coding is the facial recognition algo-
rithm by Wright et al. [226, 225]. Since then, the method has been increasing its in�uence
on many applications of computer vision, including visual tracking.

According to the survey conducted by Zhang et al. [238] in 2013, sparse-coding-based
tracking algorithms have two major contributions: �rst, Appearance Modeling based on
Sparse Coding (AMSC) and secondly, Target Searching based on Sparse Representation
(TSSR). In visual tracking, the appearance model of a target is represented by image
patches, which are stored in a redundant matrix, called dictionary. Only a subset of
those image patches are selected to encode the most dominant features of the target. On
the other hand, Target Searching based on Sparse Representation intends to �nd the best
coe�cients to represent the given candidates in a dictionary. The pioneer works using
sparse representations in visual tracking have been introduced within the particle �lter
framework [70] by Mei et al. [154, 155] and Zhang et al. [241]. Each candidate is represented
as a sparse linear combination of target and trivial templates. This set of templates, i.e.,
dictionary, is updated regularly in order to maintain an up-to-date appearance model. The
role of the trivial templates is to account for possible object occlusions (see Figure 2.8).
The representation coe�cients for each candidate are obtained by solving an `1-penalized
least squares minimization problem.
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Figure 2.8 � Sparse representation with target and trivial templates handling occlu-
sion [155].

Inspired by the method in [154], there were many papers improving the robustness
of the approach and reducing the computational cost. Liu et al. [144] introduced a two-
stage sparse coding to jointly minimize the target reconstruction error and magnify the
discriminative ability. Mei et al. [156] proposed a modi�ed particle �lter framework that
removes insigni�cant samples before encoding the whole samples in the dictionary. Bao et
al. [12] introduced a minimization model in which the method combines a `1-norm and a
`2-norm to improve accuracy, and used a fast solver FISTA [16] that allows the algorithm
to perform in real-time.

The important works [112, 250] in 2012 contributed to more e�ectively representing
target and adapting to appearance variations. Jia et al. [112] proposed a structural local
sparse appearance model to avoid drift problems and to handle partial occlusions. Con-
cretely, the representation of targets is a set of overlapping local image patches covering the
entire target's region, and then candidates are encoded in a dictionary containing local im-
age patches of the target by the representing coe�cients. Previously, these coe�cients are
pooled with respect to the position of their corresponding image patches in the structural
local appearance model described before, as called alignment-pooling step. The pooled
features show which patches of candidates belonging to the target and where the target's
centroid locates at inside the bounding box. Zhong et al. [250] presented a new appearance
model combining a Sparsity-based Discriminative Classi�er (SDC) and a sparsity-based
generative model (SGM) to adapt to the appearance change itself (generativeness) while
reinforcing the distinctness of the target with the background (discriminativeness). In
brief, discriminative features are sparsely selected by encoding a dictionary consisting of
positive and negative samples generated around the target. After selecting features, the
reconstruction of the candidate based on these features focuses on representing the target
more genuinely and e�ectively. The reconstruction error is later combined with the his-
togram of sparse coe�cients, which are encoded in a dictionary of k-means clusters of the
local patches covering all over the target at the �rst frame. By incorporating SDC and
SGM, the method can enhance the accuracy of the tracker and have better dealing with
occlusions.

Wang et al. [217] proposed an online dictionary learning algorithm for updating the
object's templates, reformulated the sparse coding problem with the Huber loss. The
loss function allows the sparse coding problem to remain equivalent to the standard ap-
proaches [154, 156] while eliminating trivial templates. This helps the dictionary enor-
mously reduce its size, so the tracker bene�ts the computational cost.

Wang et al. [215] exploited both classic Principal Component Analysis and sparse rep-
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resentation for e�ciently learning dictionaries. Zhang et al. [242] introduced the consistent
low-rank sparse representation to obtain a structured dictionary that allows candidates to
be computed jointly and e�ciently. Yang et al. [233] provided a framework of an online
discriminative dictionary learning, meanwhile, Rousseau et al. [182] proposed a dictionary
learning approach to model the appearance of targets, which results in a smaller size of
the dictionary. Zhang et al. [243] released the Structural Sparse Tracking approach, which
generalizes all the structural sparse appearance models. This method uses a prede�ned
spatial layout to sample local image patches inside candidates and represents these patches
in a local dictionary of image patches. For each candidate, by following the spatial layout
structure, the sparse coe�cients are rearranged to reconstitute the coe�cient of the entire
candidate as in global sparse modeling approaches. As a result, the method incorporates
candidates with their local patches to jointly represent the target without losing the de�ned
spatial structure of the model. In 2013, Zhang et al. [238] made a survey of sparse coding
based tracking methods and conducted an experimental comparison of these trackers.

2.3.3 Correlation Filter methods

Searching the target in the area near to the last position of objects makes tracking
problem di�erent from detection problem. Object searching is to �nd the best matching
candidate among those generated around the last object's position. Most classic trackers
adopt particle �lter frameworks that use a Monte Carlo approach to represent the tar-
get's position via a probability density of particles. The advantages are the convenience
of estimating and propagating the posterior probability density through frames; dynamic
model (or state transition model) and observation model can be changed to adapt to dif-
ferent tracking methods and appearance models. Nevertheless, the disadvantage of these
frameworks is that in order to ensure the accuracy of the tracking process, the number of
particles dramatically is increased according to the target's state dimension. There were
many works, previously mentioned [156, 112, 242, 243], addressing this critical issue.

On the contrary, the �rst correlation �lter in visual tracking was introduced by Bolme et
al. [26] in 2010 to tackle the candidate searching problem di�erently. Instead of generating a
large number of samples, the method densely convolves the correlation �lter, e.g., target's
templates, with the search area. Then, the most expensive computation, which is the
correlation, is e�ciently and quickly computed in the Fourier domain. In this study, to
avoid confusion, we use the terms the spatial domain for �time domain� and Fourier domain
for �frequency domain�. Computing the solution in spatial domain is highly expensive, so
the biggest advantage of this approach is the capability to operate the entire calculation
in the Fourier domain, which makes these trackers overperform others in speed. Figure 2.9
depicts the general scheme of correlation �lter tracking approaches.

In the correlation �lter (CF) based methods, the tracking problem is formulated as a
regression problem. Instead of sampling training candidates around a target, a circular
matrix (as illustrated in Figure 2.10) is used to create an artifact of the movement of the
target as shown in Figure 2.11 which is an illustration of the convolution of an image patch
containing the target's template and the search image.

In detail, given two same-size vectors u and v, the multiplication of the circulant matrix
of the vector u and the vector v is equivalent to the correlation of two vectors u and v.
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Figure 2.9 � General scheme of Correlation Filter tracking approaches.

Furthermore, this correlation in the spatial domain can be operated much more e�ciently
by an element-wise multiplication in the Fourier domain. As a result, the computation
cost of correlation �lters is very low, so these types of trackers usually outweigh other
types in terms of speed. Henriques et al. [102] evolved the initial linear regression into
the non-linear regression by using the kernel trick [107]. Their kernel matrices possess a
circulant structure (see [101] for further details) that allows the correlation in their tracker
to be calculated via the wise-multiplication in the Fourier domain.

Regarding the update mechanism of CF trackers, which makes them resistant to the
appearance variation of their target, some simple methods are implemented, such as updat-
ing the �lter with a small coe�cient every frame [102]. Danelljan et al. [60] proposed the
Spatially Regularized Discriminative Correlation Filter (SRDCF), which uses the weighted
window applying to the �lter f in order to penalize the �lter coe�cients corresponding
to background part. The illustration of this method is displayed in Figure 2.12 where the
regularization weights penalize �lter values corresponding to features in the background.
This increases the discriminative power of the learned model, by emphasizing the appear-
ance information within the target's proposed region (the green box in Fig. 2.12) [60].
The weighted coe�cients of the �lter make the response within the bounding box more
discriminative in comparison to the background. To enhance the capability to capture
the characteristics of objects, [59] deploys a CNN network such as imagenet-vgg-2048 [38]
to extract robust visual tracking features. One of the setbacks of the CF method is the
restriction on image resolution that limits the accuracy of the tracking results on the size
of bounding boxes. Concretely, the tracking result is obtained from the position of the
pixel corresponding to the highest �lter response. To address this problem, Danelljan et

Figure 2.10 � Illustration of a circulant matrix. The rows are cyclic shifts of a vector image,
or its translations in 1D. The same properties carry over to circulant matrices containing
2D images.[102]
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Figure 2.11 � Example of vertical cyclic shifts of a base sample. The formulation in the
Fourier domain allows the tracker to be trained with all possible cyclic shifts of a base
sample, both vertical and horizontal, without iterating them explicitly. Artifacts from the
wrapped-around edges can be seen (top of the left-most image), but are mitigated by the
cosine window and padding. [102]

al. [61] introduced the Continuous Convolution Operator for visual tracking by using an
interpolation function. Convolving the �lter with an interpolated input image results in a
smooth response and, consequently, a better accuracy. Based on the C-COT (Continuous
- Convolution Operator Tracker) [61], ECO (E�cient Convolution Operator) tracker [58]
proposed using a Gaussian mixture to model the training data in order to avoid over-�tting
caused by recent samples. One of the main obstacles of the basic CFs in object tracking is
to adapt to the object's evolving shapes due to the articulation of the object or the change
of the angle between the object and the camera while moving. Therefore, the recent CF
tracking methods mainly rely on deep neural nets to enhance their performance in fea-
ture extraction for object tracking, as the heart of the Siamese structures, which will be
described in the next section.

2.3.4 Deep Learning methods

Since the success of deep learning in computer vision, many research works have ap-
plied this technique to tracking problems. Notably, Convolutional Neural Networks (CNNs)
greatly contributed to representing visual data by showing their outstanding performance
in a variety of problems in computer vision. Hence, as one of the �rst attempts to use
deep learning in visual object tracking, Nam and Han [162] presented the Multi-Domain

a) Standard DCF b) SRDCF

Figure 2.12 � Visualization of the �lter coe�cients learned using the standard DCF (a)
and SRDCF approach (b)[60]
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Figure 2.13 � The MDnet architecture, which consists of shared layers and K branches of
domain-speci�c layers. Yellow and blue bounding boxes denote the positive and negative
samples in each domain, respectively [162]

Network (MDnet). This method is technically classi�ed as a multi-domain learning algo-
rithm whose training data is considered as a dataset with multiple domains. Each domain
is a single metadata attribute, and in the paper, these domains correspond to individual
training sequences. In detail, their network consists of a series of shared layers with a
number of branches corresponding to speci�c domain layers, which are simply the binary
classi�ers. The MDnet's architecture is depicted in Figure 2.13. The authors separate the
head branches containing the domain-speci�c information from the shared layers storing
the domain-independent information. Indeed, during the training phase, their CNN is
trained with a series of single sequences (with a corresponding domain-speci�c layer for
each sequence) and retrained multiple times in the same order. Then during the testing
phase, all the pretrained domain-speci�c layers are replaced by new ones. Moreover, the
new domain-speci�c layers and the FC layers in the shared network are �ne-tuned during
the tracking process. The intuition behind this approach is that this learning manner helps
obtain the parameters of the shared layers with the useful generic feature representations in
order to track generic objects during the testing phase without pretrained domain-speci�c
heads. By training the network in this fashion, the tracker becomes generic and not biased
to any speci�c sequence. To increase the accuracy of the trackers, Danelljan et al. [57]
introduced ATOM tracker (Accurate Tracking by Overlap Maximization), which consists
of a deep neural net structure, which is inspired from IoU-Net [113]. The IoU-Net predicts
the IoU scores of candidates in order to select the best estimate with the highest IoU value
as the tracking result.

Inspired from the successful works in facial veri�cation [198, 187], keypoint descriptor
learning [235] and one-shot character recognition [125], Bertinetto et al. [23] introduced the
Fully-Convolutional Siamese (FCsiamese) Networks for object tracking. According to the
paper, the tracking problem is de�ned as constantly detecting the object frame per frame
via a similarity function f(z, x) that compares an example image z to a candidate image
x of the same size. The similarity function is built on two full-convolutional networks,
and each extracts relevant features for a robust similarity measure. The full-convolutional
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Figure 2.14 � Fully-convolution Siamese architecture. The color pixels indicating the high
values of similarity map correspond to the sub-windows in the search area x [23]

Siamese architecture is shown in Figure 2.14. Given a search area x and an exemplar image
z containing a target, those two images are mapped into an embedding via the function
ϕ, those outputs are the inputs of a similarity function f (ϕ(z), ϕ(x)) whose output is
a scalar-valued score map. Concretely, the cross-correlation operation f (ϕ(z), ϕ(x)) =
ϕ(z)∗ϕ(x)+1 is deployed to obtain the similarity measure and this make their model similar
to the Correlation Filter scheme (Fig. 2.9) without update feedback. In terms of training
data, the ImageNet Video dataset [183] (ILSVRC2015) containing almost 4500 videos
with more than one million annotated frames was used to train their fully-convolutional
networks.

Meanwhile, instead of using the cross-correlation as the similarity function, Tao et
al. [203] train a matching function within a Siamese structure and treat the tracking prob-
lem as classi�cation. Therefore, all the candidates sampled in the ROI at the current
frame are classi�ed into positive and negative groups. Not formulating the tracking prob-
lem as a classi�cation problem, GOTURN (Generic Object Tracking Using Regression
Networks) tracker by Held et al. [100] used a regression learning model to predict bound-
ing boxes. Within the similar Siamese network architecture, the block of FC layers at
the head of their network structure, as a regression network, is fed by the extracted fea-
tures of both search area (in the current frame) and target object's template (from the
previous frame) from two CNNs. The output of this regression network is the object's
bounding box, which is then re�ned with a provided motion model to adapt to the empir-
ical smooth movements. Another relevant variation of Siamese network was introduced by
Valmadre et al. [208]. The method uses an asymmetric Siamese network that combined
the conventional Correlation Filter structure with a Siamese network. Precisely, a CNN is
pretrained to extract robust features from image frames as a pre-processing step before cor-
relation. Another signi�cant contribution of this paper is their formulation of evaluation
and back-propagation of the Correlation Filter Network. Bene�ting from the computa-
tion of correlation in the Fourier domain, this method outperformed other similar trackers
in terms of speed. Recently, there have been many other trackers based on the Siamese
structure such as as [219, 137, 249, 139, 218] and those trackers all achieved excellent re-
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sults in terms of speed and accuracy. Inspired by the Region Proposal Network (RPN)
of Faster RCNN [176] as the regressor of bounding boxes and the classi�er of objectness,
the SiamRPN tracker by Li et al. [137] includes a Siamese network for pre-processing step
and an RPN for classi�cation and regression. Indeed, the Siamese subnetwork serves to
extract features from template and image frames. Next, the extracted features go through
a Region Proposal Network which comprises one classi�cation branch and one regression
branch. Inside each branch, both template and image features go through a CNN, which
aims to build k anchors for better prediction [176], before the correlation operation between
these two outputs, i.e., Siamese-like structure. Then the correlation results in k pairs of
layers are the k positive-negative sample pairs building a 2k-layer response map. In the
same manner, the regression branch takes the extracted features of template and image
as inputs of the Siamese-like structure, but the CNN of this branch, instead, generates 4k
features corresponding to 4 coordinates used for the proposal re�nement of k anchors. The
detail of SiamRPN is illustrated in Fig. 2.15. By adapting the Region Proposal Network
for object tracking, the method technically resolved the pose and size-change issues during
tracking. Since multiple similar objects may appear in the usual case of SOT videos, SOT
trackers can be distracted from their primary target. Hence, in the paper of Li et al. [139],
a gradient-guided network was introduced, called GradNet, which uses the gradients ex-
tracted from the Siamese network to update the target's template so as to di�erentiate it
from other similar objects.
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Figure 2.15 � Main framework of Siamese-RPN. (? denotes correlation operator) [137]

To conclude, according to the search strategy, most Deep tracking methods are mainly
separated into two approaches: regression problem such as bounding box regression [100,
219] or correlation �lter (Fig.2.14) [23, 208, 249] and classi�cation problem (Fig.2.13) [162]
or both [57, 203, 137]. In terms of network structure, they are divided into two groups:
Siamese trackers [23, 208, 249, 219, 203, 137, 249, 139, 218] and non-siamese trackers [100,
162, 57].

2.4 Single view multi-object tracking

Despite the tremendous advances of single object tracking algorithms, Multiple Ob-
ject Tracking (MOT) by applying multiple Single Object Trackers is still not practical
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in many applications, which require real-time processing, such as tracking in autonomous
driving. This is because the single object tracking problem ignores many critical issues of
the multiple objects tracking in reality. First, the computational cost is proportional to
the number of objects appearing on the scene. Many single object trackers can perform
real-time tracking (i.e., >30 fps) with high accuracy, but only track one single object in
the video. Secondly, single object trackers focus on di�erentiating the object's appearance
from the background, while in most MOT applications, the tracking algorithms need to
track many objects which belong to the same category such as people, vehicles. The SOT
tracker might confuse its target with similar objects since the SOT trackers do not dif-
ferentiate intra-class objects. This leads to poor tracking results due to the segmentation
of the trajectories of multiple objects. Third, MOT algorithms need a detector to detect
the potential target every frame and initialize new trackers from the new detections while
excluding false positives. Next, the SOT trackers perform under the assumption that the
target object is always present in the entire video; however, in MOT videos, an object might
be absent temporally. Finally, since a target can appear and then disappear multiple times
for many reasons such as occlusion or out of Field of View (FOV), the re-identi�cation is
required to reconnect the target's trajectories. These di�culties keep SOT algorithms from
being adaptable to real-world demands. In the following sections, we will discuss MOT
state-of-the-art methods.

In the literature on tracking, there are two main tracking communities working on
di�erent contexts: the visual tracking community, which uses video streams as input,
meanwhile the multi-sensing tracking community which mainly uses multiple sensors to
detect and record target motions by radio signals. Visual tracking is widely known in
computer vision with various applications based on images recorded by cameras. Otherwise,
multi-sensing tracking is popular in the robotic and control �eld with many applications
from civil to military. In the next subsection, we introduce the most relevant approaches
in multi-sensing tracking that have great impacts on the visual Multi-Object Tracking
algorithms. In this community, the term Multi-Target Tracking (MTT) is mainly used
instead of Multi-Object Tracking (MOT). For convenience, in this dissertation, the term
Multi-Object Tracking (MOT) is used in all cases.

2.4.1 Classic methods

Since the success of tracking techniques in remote sensing, which relies on sensors to
acquire signals, they have become popular in engineering and military �elds, and many
MOT trackers developed later have mainly relied on those techniques. The most popular
one is the Kalman �lter and its variations such as extended Kalman �lter (EKF), unscented
Kalman �lter (UKF), unscented extended Kalman �lter (UEKF) [31]. In general, the
Kalman �lter (known as Linear Quadratic Estimation) models a dynamic system which
is presented through the state of a discrete-time process that is expressed by a linear
stochastic equation system. The state of the process at the time instance t, xt, equals to a
state-transition model F multiplying by the previous state at t−1, xt−1, with some process
noise wt, as the formulations:

xt = Fxt−1 + wt (2.1)

In tracking problem, the state is chosen as the position of the target, the transition
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model predicting the future target's position is based on its trajectory, and an observation
model obtains the position measure from image input. However, to model an arbitrary
motion of objects, the linear system does not �t in general cases. Therefore, the non-linear
versions of the Kalman �lter, such as extended Kalman �lter (EKF), are used instead.
Concerning the extended Kalman �lter, the functions of the state transition and observa-
tion model are not necessarily linear but should be di�erentiable. The EKF adapts the
multivariate Taylor Series expansions to linearize a non-linear model at the working point.
To sum up, there are two steps in the EKF: �rst, predicting state and covariance esti-
mates; secondly, updating the �lter from the measurements (or the observations). In 1979,
Reid et al. [175] introduced the �rst multi-target tracker based on the Kalman �lter, called
Multiple hypotheses tracker (MHT). The data association strategy used in the MHT is to
delay giving �nal results after a certain time. The delay allows the algorithm to open up all
the hypotheses, which are all the combinations of detections over the period of the k-last
frames, called the hypothetical tracklets. In other words, considering only the k-last frames
causes the elimination of the hypotheses older than k frames. The MHT possesses multiple
track trees at each time instance, and each tree represents all the hypotheses with a root
growing from a single observation. At each new frame, the track trees are updated from
new observations (i.e., new detections), and each track (i.e., branch) in the trees is given a
score which is based on how likely the track can be formed from its detections. The best
set of non-con�icting tracks (called the best global hypothesis in the original paper [175])
can then be found by solving a Maximum Weight Independent Set problem. Therefore,
the branches, which are way far from the roots, are pruned o� the trees. Subsequently,
the MHT has the capability to explore solution space intensively, but its setback is the
unnecessarily increasing number of targets which are mostly false positive. That causes
the di�culties of implementing the MHT in practice due to the high computational cost.
There were several works trying to solve this typical problem such as propagating only
the M-best hypotheses [52] or extending the classical particle �tler [108]. The MHT tents
to spawn new tracking segments that might belong to the same object (called tracklets).
In many cases, failing to detect object eventually leads to terminating good in-process
tracklets and creating new ones. Hence, the MHT is unable to recover the failure tracking
cases. In 2015, Kim et al. [123] revisited the MHT in the case of visual tracking with a new
appearance model integrating in the conventional target scoring function. The promising
results obtained are comparable to the state-of-the-art performance.

As one of the most popular tracking moving objects methods in the early 80s, Joint
Probabilistic Data Association (JPDA) �lter [82] was widely used in the robotic community.
It is an elegant method of associating new detections with existing targets using a joint
probabilistic score. One of the advantages of this approach compared to the MHT is that
it allows objects to be assigned with dummy nodes, which represent missing detections. In
2015, Hamid et al. [93] revisited JPDA �lter and applied the method in visual tracking.
By reformulating the data association problem as a bipartite graph problem and solving
it via Interger Linear Programming (ILP), they succeeded in adapting JPDA approach
to the visual tracking problem. One of the biggest problems while implementing JPDA
tracking method in practice is that �nding the exact solution of JPDA is NP-hard. To
tackle this issue, Oh et al. [163] presented the Markov chain Monte Carlo data association
(MCMCDA) for solving data association problems arising in multiple-target tracking. The
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authors have proved that, in order to track a single target, the single-scan MCMCDA
algorithm provides a fully polynomial randomized approximation scheme for JPDA. They
also proposed the multi-scan MCMCDA algorithm to track an unknown number of targets.

Using particle �ltering as [108], the MCMC-Based Particle Filtering (MCMC-PF)
method by Khan et al. [122] addresses the problem of managing the entries and exits
of multiple targets, which probably have the same appearance and frequently interact each
other. In detail, the method uses a Markov Random Field (MRF) motion prior to tack-
ling the identity-switching issue that occurs when multiple objects overlap. The authors
then introduced the Markov chain Monte Carlo (MCMC) sampling approach to reduce
complexity caused by the MRF formulation.

Vo et al. [213] have developed another well-known tracking technique, which named
Gaussian Mixture Probability Hypothesis Density Filter (GMPHD), to track multiple mov-
ing objects. However, this method is dedicated to detecting moving objects in noisy de-
tection environments. This �lter is implemented in multi-sensing tracking rather than in
visual tracking.

2.4.2 Tracker management for Single-Object-tracking based approaches

Processing independently from the multi-sensing tracking community, the visual track-
ing community early focused on tracking a single object. Notwithstanding, as aforemen-
tioned, applying multiple single-object trackers to track multiple objects simultaneously
and parallelly is being challenged by many critical issues. One of the most signi�cant is-
sues is how to keep the parallel tracking process operating while objects can appear and
disappear at any time due to a variety of reasons such as entering/leaving the scene, occlu-
sion by obstacles or by other objects, i.e., mutual occlusion. The mutual occlusion might
be the biggest problem in MOT because it causes trackers to drift, switch their identities,
or "stick" together. These issues demand the Single-Object-Tracking based (SOT-based)
approaches the ability to organize all trackers and keeping trackers active or inactive in
appropriate situations, e.g., targets appear and disappear temporarily.

There are many works [229, 47, 184, 252, 231, 21, 232] addressing this typical issue. In
2015, Xiang et al. [229] speci�cally addressed this issue and emphasized the importance of
lifetime management while implementing Single Object Tracker to track multiple targets.
The authors proposed an online MOT framework which supports the SOT implementation
on the MOT context by introducing their Markov Decision Process (MDP) formulation
in modeling the lifetime of a single object. The next section is devoted to describing this
work.

2.4.2.1 Markov Decision Process in tracker management

A Markov Decision Process (MDP) is a discrete-time stochastic process that models
a decision-making process whose evolution over time is under a decision-maker with some
probabilities at each time step. A MDP is de�ned through a tuple of objects (S,A, Pa, R):

• The target state space S
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• Sets A(s) of available actions at state s ∈ S

• Pa(s, s′) := P (st+1 = s′|st = s, at = a) is the probability that action a in state s at
time t will lead to state s′ at time t+ 1

• A transition function T : S ×A → S

• A reward function R(s, a) is the immediate reward received after taking action a from
state s.

The lifetime of a single target is modeled by a deterministic Markov Decision Process
(MDP), which means Pa(s, s′) ∈ {0, 1}. The state-space mainly consists of 4 states: Ac-
tive: corresponding to the initialization of a new tracker from a new detection, Inactive: the
ending of any tracker; Tracked : the in-tracking-process of trackers; Lost : the temporally
losing target of trackers. The MDP framework for Multi-Object Tracking is illustrated in
Figure 2.16. In their framework, all new detections, which do not belong to any current
tracking target, are �rst set to Active state, then the true positive detections moves on to
tracked state, otherwise the false positive detections are eliminated by setting them to inac-
tive state. The trackers in tracked state continue tracking their target if there are no di�cul-
ties such as occlusion, or else, they are paused by transiting to lost state. The lost trackers
restore their tracked state if there is any true corresponding detection found in their nearby
area where they lose their targets. Otherwise, they retain their lost state in the next frame.
Additionally, all inactive trackers are stored as tracking results and never come back to the
tracking process.
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Figure 2.16 � The Markov process of a single object
in Multiple Object Tracking Xiang's framework [229]

In terms of actions and tran-
sitions, there are several possible
transitions designed which allow
trackers to be transferred between
target's states. In the framework
of Xiang et al. [229], all the ac-
tions are deterministic, i.e., the
next state of a tracker is deter-
mined by its state and the taken
action at the current frame. In de-
tail, at active state, a binary Sup-
port Vector Machine (SVM) is im-
plemented to classify all detections
into false positive and true positive
groups. All true positives take the
action a1 in order to pass to tracked
state, otherwise, the action a2 move all the false positives to inactive state. Each tracked
tracker performs a SOT process independently if it succeeds to track its target, it takes
the action a3 and remains in tracked state, in the case of failure, a data association step
follows up to link the tracker with the target via nearby detections. Indeed, the success
of the data association (DA) step is decided by a second SVM. If DA step succeeds, the
tracker updates the new appearance of target and remains tracked state, if not, it is set
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into lost state by taking the action a4. In reference to lost trackers, a matching process
tries to recatch the target from all nearby detections via data association. In the case of
success, the action a6 takes the trackers back to tracked state in the next frame; otherwise,
they keeps their lost state with the action a5. Moreover, after a �xed time T , every tracker
still in lost state is transferred to inactive state by action a7. The reward function might
be used to determine the deterministic policies during training [229], which is described
in Reinforcement learning problem (RL). The reinforcement learning problem is used to
determine the best policy for MDP to accumulate the maximum reward at the end of the
process. In the paper [229], the authors present their method as an Inverse RL algorithm.
The authors claimed the use of Inverse Reinforcement Learning (IRL) algorithm to design
the reward function. However, the goal of the IRL problem is to determine the reward
function with a given speci�c policy, which is unknown in this case. Another issue spotted
in the paper is that the policy applied at tracked state is the outcome of a SOT tracker
(or the data association step), which should be a function of the appearance of the target.
This means that their transition function T (s, a) does not map the state s (e.g. active,
inactive, lost, tracked) and action a. Their MDP is technically not a standard MDP and
does not solve the initial IRL problem. Instead, the authors use the regular condition loops
to guide their MDP in the tracking process.

Besides the introduction of MDP to naturally handle appearance/disappearance of
targets, to well organize their trackers, they also developed a mechanism to treat all trackers
in order. Concretely, given a new input frame, they �rst run the tracked -state tracker, this
favors these trackers to gather �rst the detections belonging to them via back-up DA step.
The remaining detections are used to recover the lost-state trackers. The similarity scores
between the lost-state trackers and these detections are computed in order to assign the
lost-state trackers with the detections via the Hungarian algorithm [161]. The rest of the
detections serves to initialize new trackers.

2.4.2.2 Spatial-Temporal attention to handle multual occlusions

As one setback of Xiang's MDP framework [229], the framework uses a simple technique
to detect occlusions, which is a signi�cant issue that deteriorates the tracking results.
Indeed, their method relies on forward-backward Lucas-Kanade keypoints matching, which
is later scored by an SVM. To resolve this problem, many papers [47, 184, 252, 231, 21]
focuses on spatial-temporal relation between targets in order to predict occlusion e�ciently,
when targets start crossing each other. Chu et al. [47] introduced a novel approach that can
handle normal or mutual occlusions using a spatial-attention network to retrieve features
on the useful zone of attention inside the bounding boxes of targets, called visibility map,
during occlusion. Meanwhile, Zhu et al. [252] proposed a novel MOT framework supporting
SOT-tracker. Their framework performs in the same manner as those of Xiang et al. [229].
Figure 2.17 shows the pipeline of the MOT framework, which consists of 3 main stages:
detection, single-object tracking, and data association. Two points make this method
di�erent from the MDP of Xiang et al. [229]. First, they introduced a novel network
architecture, named Dual Matching Attention Networks (DMANs) including the Spatial
Attention Networks (SANs), which aims to compare detections with tracklets to extract
useful spatial features on the detections while avoiding the occlusion part, and a Temporal
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Single Object Tracking

tracked

Detection

lost
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Figure 2.17 � The MOT pipeline of [252]. The state of each target switches between tracked
and lost depending on the tracking reliability. Single object tracking is applied to generate
the tracklets for the tracked targets while data association compares the tracklets with
candidate detections to make assignments for the lost targets[252].

Attention Network (TAN) which uses the extracted features as inputs to associate tracklets
with detections. Secondly, their approach matches each tracklet with a detection in the
detection set, which is technically a bipartite graph matching in their data association step.
Recently, Berhmann et al. [21] presents an MOT framework, called Tracktor, to handle
the track-occlusion-state switching of targets. This method uses two neural nets with a
Faster RCNN backbone to build one classi�er for occlusion detection, and another for the
regression between targets' predictions and detections.

2.4.3 Tracking-by-Detection paradigm

As most of the surveillance applications focus on human tracking, in particular, the last
decade marked the return of the Tracking-by-Detection strategy [114, 237, 4] due to the
emergence of e�cient person detectors [4]. By de�nition, Tracking-by-Detection is to gather
the detections belonging to the same identities in a whole video to infer their trajectories.
This approach possesses several advantages ahead of those of SOT-based. First, not having
any tracker, the Tracking-by-Detection algorithm only focuses on �nding the repeat of in-
dividuals from the collection of all detections and matching those detections with di�erent
identities. Therefore, they do not have to cope with the typical problems of SOT-based
methods mentioned previously. Because no trackers are used in the Tracking-by-Detection
approaches, the tracking algorithms do not need to organize the order of trackers, to man-
age the active and inactive state of trackers, to update the target appearance without
causing drift problems, to have a robust appearance model resisting to complex scenes or
the environmental lighting changes. Concerning detectors, the modern detectors can work
in any condition of environments unless targets are unrecognizable. Notwithstanding, the
downside of this approach is that it is sensitive to the reliability of the detectors. This
causes the Tracking-by-Detection approach to deal with several speci�c problems. First of
all, in most cases, false positives appear frequently due to complex scenes, environment tex-
tures, re�ections, or deformed images caused by cameras and shadows. Secondly, multiple
detections can overlap on the same person, and this leads to the need of a post-processing
step to induce the �nal tracking results. Thirdly, when detectors fail to detect targets, i.e.,
true negatives, this makes their trajectories broken into small segments (called tracklets as
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well). Hence, these tracking methods must be able to estimate hypothetical positions of
targets in the case of missing detections. Lastly, because of resorting detections regarding
each individual, data association approaches are in favor of post-processing after gathering
all detections. Those approaches seem unsuitable for many applications requiring online
tracking results, but in the literature on data association approaches in the next subsection,
there is a signi�cant number of papers reformulating the problem to adapt to the online
processing requirement.

2.4.4 Data association

Since the management of the di�erent targets is the main challenge for MOT, the
Tracking-by-Detection paradigm has evolved as the main approach. This is especially true
since the advent of high-performing category detectors. The main objective of Tracking-
by-Detection methods is to match targets, i.e., objects identi�ed at frame t, to detections,
i.e., resulted bounding boxes from detection at frame t+ 1, which is formulated as a data
association problem. In this section, we review the most common data association methods
used in the MOT tracking problem.

2.4.4.1 Minimum Cost Bipartite Matching

Matching the current targets with the new detections found in the next frame is formu-
lated as a bipartite matching problem. Indeed, given two independent sets, one contains
all targets at the current frame, another one contains all detections found in the next frame
image, we want to build a bipartite graph (or bigraph) G = (T,D,E) in which T and D are
respectively the target and detection sets, and each edge e ∈ E represents an assignment
linking a target to one or many detections. Meanwhile, a single detection d ∈ D can not
be matched with more than one target t ∈ T . Additionally, each edge has a non-negative
cost c(t, d), which is an appearance distance between targets and detections. We want
to �nd the best matching between two consecutive frames with a minimum total cost. A
variation of the Hungarian algorithm by Kuhn [128] can solve the minimum cost bipartite
matching problem e�ciently with the complexity O(n2m) where n and m are the numbers
of targets and detections respectively. In order to handle the entries, exits, or missings of
targets, some papers introduced an extended bipartite matching problem by adding dummy
or virtual nodes. According to these methods, m targets link at the current frame t links
n detections found at the next frame. n virtual entry nodes are added to the target set T
to stimulate the creation of new targets in the next frame. Similarly, m virtual exit nodes
are also added to the detection set D to prepare for the case of all targets exit in the next
frame. Due to the matching occurs only between the current frame and the last one, these
methods �t for online tracking applications. Figure 2.18 depicts the extended bipartite
matching problem in data association tracking approaches. Recently, Xu et al. [232] pro-
posed an alternative approach of Hungarian assignment to the bipartite matching problem,
which uses two Gated Recurrent Unit (GRU) to encode targets' and detections' features
for another deep neural network, so-called Deep Hungarian Net (DHN). Indeed, the output
of the DHN is a �pseudo� assignment matrix, whose elements are bounded between 0 and
1. To conclude, the papers treating data association as Minimum Cost Bipartite Matching

60



2.4. SINGLE VIEW MULTI-OBJECT TRACKING

(MCBM) problem include [4, 191, 184, 252, 224, 232].

M targets 

N detections M exits 

N entries 

t

t+1

Virtual nodes

Figure 2.18 � The extended bipartite matching problem in data association tracking.

2.4.4.2 Maximum Weight Independent Set

The data association problem has also been reformulated as a Maximum Weight Inde-
pendent Set (MWIS) problem. Given a set of detections D during a time period from t1 to
t2, the trajectories of targets are the independent subset of detections (i.e., tracklets) such
that any single node of the independent set is only found in a single time frame. Hence,
the tracklets are all the possible combinations of detections under the previous conditions.
These tracklets are designated as the nodes of a graph. Those nodes have the weights,
which represent the likelihood of the corresponding tracklet among the other tracklets.
The edges of the graph will connect the nodes (sets of detections) if they share any same
detections. The illustration of this type of graph is shown in Figure 2.19.
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Figure 2.19 � The illustration of MHT. (a) Track hypotheses after the gating test at time.
(b) An undirected graph with Maximum Weighted Independent Set (MWIS) is highlighted
in blue[29].

Therefore, we can see the trajectories of the target as the Maximum Weight Indepen-
dent Sets. However, the MWIS problem is known to be NP-hard, and it can be solved
approximately, with the complexity of O(n3) (n is the number of nodes in the graph).
This motivated Brendel et al. [29] to introduce a variant of the MWIS problem devoting
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to matching detections in two consecutive frames, that reduces the complexity to O(n2).
Indeed, the authors rede�ned the node as a pairs of consecutive detections (2-frame track-
lets); this means they only consider the time period from t to t + 1. As a result, the
trajectories are created from the tracklets consecutively sharing the same detections in the
illustration 2.20 (a). Therefore 2-frame MWIS can be solved optimally and e�ciently in
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Figure 2.20 � The graph: (a) Blue nodes (tracklets) are connected by edges at the time
frame from t to t+ 1, and share the same detection (denoted with integers); this partitions
the graph into two independent subgraphs[29]. (b) The representation of MWIS in bipartite
matching graph problem (Ristani thesis)

O(n2m) time for n detections and m tracklets. With a time frame of 2, the MWIS problem
can be converted to Minimum Cost Bipartite Matching by rede�ning the weight of edges
(see Fig. 2.20 (b)) and also the semantic of nodes. In the Multiple Hypotheses Tracking
(MHT) revisited paper, Kim et al. [123] also resolved the MWIS problem to �nd the best
hypotheses in the last N frames, i.e., the best tracklets of N-frame. Otherwise, Choi [45]
tracker (Near-Online Multiple Target Tracking NOMT) also uses the MHT at his �nal step
to release the target's trajectories. Figure 2.19 describes the MWIS problem in the MHT
method.

2.4.4.3 Minimum Cost Network Flow

Zhang et al. [237], Pirsiavash et al. [167], Zhang et al. [240] reformulate the data as-
sociation in MOT as a Minimum Cost Network Flow (MCNF) problem. Given a set of
detections, a directed graph is built from these detections as its nodes, and the edges
represent the association of bounding boxes in time.

Additionally, there are two more especial nodes: source and sink. The intuition of this
approach is that the creation of "streams" from source node to sink node correspond to
trajectories of targets from its starting moment to its ending. The source node connects
to any node in the network, except for the sink node, in order to initiate new tracking
processes of all newly detected targets at any frame of the video. Otherwise, apart from
the source, all nodes connect to the sink ; thus, the sink is used to terminate the tracking
process of any target at any moment. The conventional nodes are connected by the edges
weighted by an appearance distance between their representing detections in 2 consecutive
frames. The trajectory of a target is modeled by a path which starts from the source, then
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goes through the detection nodes which are linked by minimal cost edges and ends at the
sink. The formation of tracklets in the network looks similar to the phenomena of a stream
from one point to another, its path is located at low energy places. An illustration is given
in Fig. 2.21.

Source

Sink

t t+ 1 t+ 2

Figure 2.21 � The network �ow in Multiple Object Tracking

There are several approaches to handle the missing detections (i.e., true negatives),
long-time, and mutual occlusions. The authors [240] introduced virtual nodes that could
link to the previous detection nodes with a certain cost, which avoids the �ow network
abusing this type of nodes to create "endless" trajectories. In the paper [237], the occlusion
problem is modeled as merging splitting paths. Moreover, the authors [237] also added
in their network �ow model an additional node just after every regular node, they are
connected by an observation edge with a cost which is opposite to the con�dence score
of detections. This takes into account the false positives generated by detectors. The
algorithm of [237] has a complexity of O(n2m log n) for a graph with n nodes and m edges.
Pirsiavash et al. [167] state that if n and m scale linearly with the number of frames N,
then the algorithm of Zhang et al. [237] runs in O(N3 logN) to �nd K tracks. Noting
that the graph has unit capacity edges and is directed and acyclic, Pirsiavash et al. [167]
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provided an algorithm that solves the network �ow problem in O(KN logN), involving
the Successive Shortest Paths and the bisection search over K. They also give a dynamic
programming greedy approximation algorithm with O(KN) complexity. This algorithm
proves as e�ective as the one involving the Successive Shortest Paths. The Minimum
Cost Network Flow (MCNF) graph in the papers [237, 167, 240] is the generalization of
the standard MCBM formulations as it covers the e�ects of false detections, the starting,
ending or temporally missing of targets.

In 2015, a variation of Minimum Cost Network Flow (MCNF), named Pairwise Costs
Network Flow (PCNF), was introduced by Chari et al. [37]. They use the same graph
as in the Minimum Cost Network Flow problem but extend the optimization objective to
account for all pairwise costs. The extension aims to resort to the multiple detections per
target, which usually happens when using detectors. Previously, in the most common way,
especially in an undirected graph formulation, a Non Maxima Suppression (NMS) step [237,
200, 201, 4, 240] usually follows after gathering detections from detectors. A problem
emerging when detecting targets in a crowded scene is that the mutual occlusion results
in the detection overlapping. Applying the NMS also excludes many reliable detections.
Addressing this problem, Pairwise Costs Network Flow (PCNF) builds the internal edges
between detections within a frame, which are not allowed in a standard network �ow. These
edges are weighted by an overlapping score, e.g., IoU score. As a result, the cost of a path
(trajectory) includes all pairwise costs in the trajectory, rather than only costs of edges
along the trajectory. The authors resolve the problem via Integer Linear Programming.

2.4.4.4 Graph Multicuts

There were many noticeable papers reformulating data association problem for Multiple
Object Tracking as a Graph Multicut Problem (MP) [200, 201, 119]. Tang et al. [200]
constructed an undirected graph G = (V,E) whose nodes V represent all detections in
the whole video and whose edges connect pairs of detections belonging to the same target,
including those within the same frame. The solution of the Minimum Cost Subgraph
Multicut Problem is the subgraphs G′ = (V ′, E′) of G, which only includes the detections
from the same targets. Every node and edge are assigned respectively to a unary and
a pairwise cost. The unary cost is usually assigned the con�dence score of detections
to account for the false-positive e�ect of detectors, and the pairwise cost is usually the
a�nity between two detections. The graph multicut problem can be solved e�ciently
using the duality between maximum subgraph weight [200, 119, 179] and minimum total
cost of cut [201, 202]. In the paper [200], the graph multicut problem is interpreted as
the minimization of the cost to retain nodes and edges in the subgraphs, which indicate
the distinct targets. This means that each subgraph containing an unique target should
have a negative cost. The minimization problem is then solved via the Binary Integer
Program (BIP). The graph and subgraph solutions are depicted in Figure 2.22. Graph
multicut was preliminarily introduced in the paper of Ristani and Tomasi [179] in 2014 with
their formulation under the terms correlation clustering or graph partitioning. In fact, the
correlation clustering problem can be obtained from graph multicut by removing the unary
cost and inversing the pairwise cost to positive, which makes the original minimization
problem in Multicut problem papers become the maximization problem in the formulation
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Figure 2.22 � An example for tracking by multicut. A graph (bottom) is built based on the
detections in three frames (top). The connected components that are obtainedby solving
the multicut problem indicate the number of tracks (there are two tracks, depicted in yellow
and magenta respectively) as well as the membership of every detection[201].

of [179]. Graph multicuts or correlation clustering is an NP-hard problem [11], Tang
et al. [200] proposed a heuristic solution for the unconstrained set partition problem by
using Kernighan Lin algorithm [118]. Meanwhile, Ristani and Tomasi [179] rely on the
optimization algorithms for graph partitioning in the literature [8]. Seeing the di�culties
dealing with long-term occlusion or missing detections that leads to the segmentation of
trajectories in tracking results, Tang et al. [202] introduce the Lifted Multicut Problem
(LMP). It originates from the standard multicut problem [201] when rede�ning the regular
edges and adding the lifted ones. In LMP method, the conventional edges connect the
detections not further than T frames apart, which results in short paths; otherwise, the
other detections can be connected by the lifted edges, which associate the short paths
to form complete trajectories. Figure 2.23 illustrates the advantages of LMP against the
conventional MP. Lastly, the optimization in LMP is solved via APX-hard [66].

2.4.4.5 Generalized Minimum Clique

Another formulation of data association in Multi-Object Tracking is the Generalized
Minimum Clique Problem (GMCP), which was introduced by Zamir et al. [236]. Similarly
to the graph formulation described in graph multicut previously, an undirected graph is
constructed whose nodes represent detections and edges represent their a�nity. Based on
this graph, the MOT data association is reformulated as �nding the nodes separated from
disjoint clusters indicating distinct targets. In the main graph, these nodes form themself
a complete graph, called a clique. Each clique contains all detections of one speci�c target
and has a cost, which is de�ned as the sum of the appearance distances between each
pair of the target's detections. The objective now becomes to �nd the cliques whose cost
is minimum. The authors proposed an iterative algorithm to associate detections into
identities iteratively, one clique (identity) per iteration. Every time a minimum clique is
computed, its edges and nodes are removed from the graph, and the process is repeated
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Figure 2.23 � Ground truth trajectories are shown in grey, regular edges in black, and lifted
edges in green. In the optimal solution solid lines indicate co-identity, and dashed lines
indicate cuts. Correlations are shown on each edge. (a) An example where MP incorrectly
merges v1 and v3 whereas (b) LMP does not have evidence of regular path connectivity
for this long range association. (c) MP incorrectly fragments the true trajectory whereas
(d) LMP makes a correct assignment due to the lifted edge[202].

until the graph is empty. An illustration of one iteration is shown in Figure 2.24, where
one detection from each frame is selected to produce the minimum weight clique. In
practice, since �nding the entire graph containing all detections of the whole video is
extremely expensive, the GMCP tracker divides the video into multiple short sequences
to limit the number of detections, then solving the GMCP results in the tracklets of all
individuals. Therefore, after having all tracklets in the videos, they solve another GMCP
again, but this time instead of using detections as nodes of the graph, they use the obtained
tracklets form the last GMCP to determine the complete trajectories of targets in the entire
video. Another variation of GMCP is presented in the paper of Tesfaye et al. [204] as the
Constrained Dominant Sets problem. The di�erence is that they reformulated the graph
partitioning problem in order to be able to solve it via the quadratic program.

Another sort of graph clique problem for data association MOT is introduced as Gen-
eralized Maximum Multi-Clique Problem (GMMCP) by Dehghan et al. [64]. In a similar
way, they build a k-partite complete graph whose edges pair every couple of nodes (detec-
tions), which are not in the same cluster (set of detections in the same frame). In the case
k = 2, the graph takes the bipartite form, so the problem becomes Minimum Cost Bipar-
tite Matching problem. Using the same strategy in [236], the method solves the GMMCP
twice to have the complete target trajectories. In the �rst time, the input of the GMMCP
algorithm is low-size tracklets (maximum 10 frames long), the algorithm output the mid-
size tracklets. The output is the input of the GMMCP algorithm for the second times
to obtain the complete trajectories. In addition to the two-stage GMMCP pipeline, the
method expresses the maximization problem in terms of Binary Interger Program (BIP);
these make it capable of solving the assignment problem jointly and optimally for all iden-
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Figure 2.24 � Bi-partite vs. GMCP matching. Gray and colored edges represent the input
graph and optimized subgraph, respectively. Bi-partite matches all objects in a limited
temporal window. On the other hand, the proposed method matches one object at a time
across full temporal span, while incorporating the rest of the objects implicitly[236].

tities in a reasonable time, even though, GMMCP has been proved to be NP-hard [64]. An
illustration of the approach is shown in Figure 2.25.
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Figure 2.25 � An illustration of the Maximum Weight Multi-Clique problem. In the graph,
4 cliques are found, each shown in a di�erent color. The method uses virtual nodes
or Aggregated Dummy Nodes (ADN) represented by stars to e�ciently model occlusion
phenomena[64].

2.5 Multi-view object tracking

In this section, we focus on the Multiple Target/Object Multiple Camera tracking
(MTMC) problems. In the literature, there are three main problems that can be solved by
a camera network: using overlapping camera networks improving the robustness of tracking
algorithms, e.g., handling occlusions, preventing identity lost/switches; non/overlapping
camera networks tracking targets in a large area; re-identi�cation or person search. The
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diagram 2.26 shows the main categories of multiple camera systems.
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Figure 2.26 � Overview of Multiple Camera Multiple Target/Object tracking problems.
Keyword boxes list the commonly used terms for each tracking/re-ID problem.

2.5.1 Architecture of camera networks

In practice, the camera systems using di�erent MTMC tracking algorithms possess
di�erent architectures. According to the computational model, we classify them into two
main models: Centralized Multi-Camera Network and Distributed Multi-Camera Network.
In centralized computing, all cameras connect to a computation center; the video streams
or any detection information is transferred from each camera to the computation center.
With this architecture, each camera usually transfers the detection information including
bounding boxes, the extracted features, etc. or even the video stream sometimes. This
model is used to collect data, detections for o�ine processing such as o�ine tracking,
re-identi�cation, or people searching. On the contrary, distributed computing distributes
the computational charge to all cameras inside the network, i.e., Smart Cameras. All
cameras are directly or indirectly connected together. Performing multi-cameras tracking,
in this case, means that each camera performs its own tracking task, all cameras exchange
their tracking results, and collaborate with each other by this information when they need
to track multiple targets more e�ciently such as handling mutli-entry/exit, occlusion or
reconnecting trajectories of the same targets across cameras. The information exchanged
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usually consists of trajectories or other tracking results. The comparison between the two
types of architecture is illustrated in Figure 2.27.

Computation
center

Tracking results (x, y, z)

Video streams, detectioninformation, etc.

Tracking infos (coordinates, occlusion state, etc...) 

Each camera performs 
individually its tracking tasks

a) Centralized multi-camera tracking network b) Distributed multi-camera tracking network 

Figure 2.27 � Comparison between two main cameras network architectures. a) Central-
ized multi-camera tracking network, which tracking algorithm perform at the computation
center, meanwhile b) Distributed multi-camera tracking network dispense tracking tasks
for all cameras

The biggest di�erence between the centralized and distributed systems is that the cen-
tralized architecture is favorable for the complex multi-camera tracking with the eventual
purpose to store the tracking information formonitoring, crime investigation, people search,
etc. This multi-camera system requires the permanent data transferring from each camera
to the central computer; as a result, this camera system requires a powerful computing
center, high-speed connections to all cameras, a data storage, and more energy eventu-
ally. Contrarily, a distributed camera system aims to improve and enhance the tracking
results on each distributed cameras. Each camera has its own tracking results, might oc-
casionally demand its neighbors for help in case of tracking become di�cult (occlusions,
lost identities). Furthermore, the connection between distributed cameras do not need a
high bandwidth and could be temporarily interrupted without a�ecting the whole tracking
system, this leads to the e�ciency of the use in energy and network bandwidth, which
are critical for any distributed system. In comparison with the conventional centralized
system, a distributed system has many signi�cant advantages in practice, such as avoiding
legal issues relative to storing private information, light-weighted system, simple to set up.
Finally, this distributed system contributes to the novel concept of Smart Cameras [194].
In the following sections, we discuss in detail the tracking algorithms used in multi-camera
networks.

2.5.2 Generic multi-view tracking

In multiple cameras tracking literature, the multi-camera systems can be categorized
according to the camera topology: non-overlapping and overlapping systems. According to
a survey of camera networks conducted by Radke [171] in 2010, the relationship between
the overlapping camera network is modeled by an undirected graph in which an edge
appears between 2 cameras if they observe some of the same scene points from di�erent
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Figure 2.28 � (a) A simulated camera network (the focal lengths of the cameras have been
exaggerated).(b) The corresponding communication graph, assuming each camera has the
same �xed antenna range. (c) The corresponding vision graph. [171]

perspectives. Meanwhile, the cameras within a non-overlapping system are related via
the likelihood of the event that an object in one camera appears in another after some
amount of time. Furthermore, the camera network is modeled by a directed graph with
expected transition probabilities. A camera network model is illustrated in Figure 2.28.
With the non-overlapping network, the objective is to link the targets belonging to the
same identities which appear in the videos of multiple cameras networks. This type of
problem has recently been reformulated as person re-identi�cation problem. However, the
initial problem of non-overlapping cameras is addressed under the strict spatio-temporal
constraint, for example, an individual cannot appear at the same time at di�erent places
in the camera network.

On the other side, the overlapping camera system is developed to resolve the most
basic purpose of visual tracking algorithms, which is to �nd targets' full trajectories, then
increase the accuracy, reliability, and robustness of a tracking system. Indeed, dealing with
occlusion is still the unanswered question for any single view tracking algorithm. Even
though several methods have the ability to recatch lost identities after occlusion, their
complete trajectories will never be determined within one single view system. In many
tracking applications that serve to analyze the behavior of crowds or to detect abnormal
movements of people, observing full trajectories is essential. This type of tracking problem
is not necessarily under the same constraints as mentioned in the non-overlapping topology,
but it essentially requires the calibration and synchronization of all cameras in the network.
We emphasize that in the literature on multiple camera tracking system, the term multi-
view tracking means tracking in an overlapping camera system, whereas the term multi-
camera tracking is more general, it can be neither overlapping or non-overlapping system.
In terms of camera calibration, calibration helps a single-camera project its tracking result
on the common plane to obtain the targets' coordinates in order to collaborate with other
cameras inside the system. These coordinates from all cameras might be useful if all of
them are gathered at the same time; i.e., this requires synchronization between cameras.
More concretely, calibrating a camera is to determine the mapping function that maps
pixel coordinates on images to 3D coordinate on the real world. This can be done through
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homographic transformation matrices after correcting the image deformations caused by
�aws on the lenses of camera [206, 245, 117]. A survey on overlapping camera networks by
Taj and Cavallaro [199] summarized the state-of-the-art approach until 2009. The majority
of multi-view tracking approaches are inspired by those of remote sensing. The diagram of
these multi-view tracking methods is presented in Figure 2.29.

Multi-view

tracking

Fuse first Manifold based

Independent

tracking
Collaborative

tracking

Detection-based

tracking
Track-before

detect
Embedding

Track first

Figure 2.29 � Overview of the classic multi-view approaches [199].

Following this categorization, the track-�rst approaches perform tracking on each cam-
era, then project and link the tracking results on the other cameras. In this branch, several
methods perform multiple single object trackers simultaneously, then fuse their results.
The fusion step broadly recti�es the results on each camera and infers the �nal trajecto-
ries on the ground plane. The typical papers using this approach include Kalman �lter
by Black et al. [24], Bayes tracker by Cai, and Aggarwal [33]. Some papers extend this
approach while collaborating trackers such as graph matching approach [5], Gaussian Mix-
ture Probability Hypothesis Density (GMPHD) approach [166] or providing a multi-object
trackers such as collaborative particle �lters [71, 170, 65]. One of the advantages of this
approach is only a little amount of information being transferred inside the camera net-
work. Whereas, the fuse-�rst approaches are usually seen in the Detection-based tracking
(or Tracking-by-Detection) algorithms [159, 5, 120, 73, 124, 81, 20, 50, 3].

A typical algorithm in this approach is the Multi-camera people tracking with a Prob-
abilistic Occupancy Map by Fleuret et al. [81]. In detail, the authors introduced a Proba-
bilistic Occupancy Map (POM), which estimates the marginal probabilities of the presence
of individuals on a �xed-size 2D grid map, given binary images corresponding to the result
of a background-subtraction from di�erent viewpoints. The detection step results in the
binary image of background subtraction on each view, and then under the appearance
model, they determine the possibilities of the presence of targets on the POM map. The
illustration of the method is described in Figure 2.30. Indeed, the POMs obtained in the
entire videos are modeled as the input of the directed graph of a dense network �ow prob-
lem. Each node on the network �ow represents a cell of the 2D grid map (POM). They
stack all POMs and add the edges which connect a node to those neighbors in the next
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frame. Each path found in the network �ow has a minimum total cost. The unary cost at
a node is its value on POM, and the pairwise cost is the binary value indicating whether
or not a node is inside its neighbor in the previous frame. The illustration is shown in
Figure 2.31. The K paths of K individuals in the videos are computed via K shortest
Paths problem [20]. There are many disadvantages to this approach. First, the method
only works under the assumption that the number of targets K is known. Secondly, the
scheme of this approach is impractical for online applications, because it processes through
two main steps: fusing detections on the map, solving the K-paths problem to extract
trajectories. Thirdly, a signi�cant amount of data is being transferred during the tracking
process. Finally, the accuracy of the tracking algorithm signi�cantly depends on the grid
size of the map. Lately, there have been a few e�orts trying to improve the accuracy of
this method, such as Deep Occlusion Reasoning by Baque et al. [13]. Having a similar
idea of fusing detection �rst, Cocsar et al. [50] sparsely encode the detection information
to minimize the size of data before sending.

iteration camera 0 camera 1 camera 2 camera 3 top view

#10

#20

#30

#50

Figure 2.30 � The estimation of the Probabilistic Occupancy Map (POM) (the last column).
Camera views show both background subtraction blobs and the synthetic average image
corresponding to di�erent iterations [81].

The last category in [199] is the manifold-based approaches that project features on a
manifold to identify the evolution of the data, which includes the positions of targets in the
case of the lack of the camera calibration data. Sunderrajan et al. [195] proposed a method
for object tracking from di�erent views based on multi-camera appearance modeling, which
uses a manifold to model the global multi-view appearance for targets. Between any pair
of views, the extracted features (e.g., the histogram of oriented gradients features (HOG)
and normalized color features) from a target are used to create a manifold surface [84, 89]
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Figure 2.31 � Network �ow model used for tracking objects moving on a 2D grid, such as
in pedestrian tracking. For the sake of readability, only the �ows to and from location k
at time t are printed [20].

where this features pair is two distinct points on it. Intuitively, the points represent the
local appearance in single views of a particular target, and the manifold surface is its global
appearance representation. The shortest path linking two points on the manifold is called
the geodesic. On this geodesic, the authors interpret the intermediate points as the positive
candidates, in addition to the negative candidates which are sampled around the target in
all views, to learn a multi-view discriminative appearance classi�er such as [6, 250, 7]. The
illustration of the geodesic connecting two views of a target is presented in Figure 2.32.

To deal with the interactions between targets, e.g., mutual occlusion, the authors intro-
duce interacting MCMC framework using the local and global particle �lters with Markov
Chain Monte Carlo (MCMC) sampling. For local particle �lters, the observation likelihood
is computed using the local appearance model and the object's interaction that are local
to the camera. For global particle �lters, the observation likelihood is computed based on
global appearance models, multi-camera information, and scene priors.

Most of the above multi-view multi-object tracking algorithms aim to process tracking
tasks online to adapt the requirement of many surveillance applications. However, there are
many applications in which the online processing is not exigent such as crime investigation,
analysis of crowd behavior. Hence, the data association approaches in MOT literature are
straightforward and adaptable to extend in the context of multiple cameras. The next
subsection is devoted to multiple cameras data association based methods.

2.5.3 Multiple cameras data association based methods

In this section, we focus on reviewing the Multiple Target Multiple Cameras approaches,
which are extended or extendable from Multiple Object Tracking (MOT) or Multiple Tar-
get Tracking (MTT) on a single-view. Systems of multiple non-overlapping cameras, in
reality, aim to observe and monitor people in a large area for security purposes. Because
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Figure 2.32 � Training samples for global appearance learning is obtained by projecting
samples from the geodesic, which links view 1 to view 2, onto di�erent generative subspaces
obtained by varying m′. The eclipse represents the Grassmann manifold Gn,d with S1 and
S2 are points on it[195].

of the particularity of its objective, high-resolution cameras are usually set up at high po-
sitions to maximize their �eld of view, which rarely overlap each other, but they are not
completely separated to avoid blind spots while surveilling on a large area. As mentioned
in the Section 2.4.4, implementing the data association based MOT algorithm in a multiple
camera context is obviously feasible, because the input of all those algorithms is simply
time-labeled detections without knowing where they come from either a single camera or
a number of cameras. However, it requires several changes in the graph model and the
spatio-temporal constraints. For example, on the one hand, two disjoint cameras cannot
be seeing the same individual at the same time, so the graph is not allowed to have an
edge linking any two detections belonging to two disjoint cameras. On the other hand, the
graph can build edges connecting the detections that are from di�erent cameras but reside
in the overlapping zones.

Solving the global optimization of the decomposition graph problem is computationally
infeasible, so in practice, the global data association MOT algorithms such as graph mul-
ticuts [200, 179, 201, 202, 119], graph cliques [236, 64], network �ow [237, 167, 240, 37] can
perform on short subsequences of the videos from all cameras. Meanwhile, the other data
association methods including bipartite matching [4, 191, 184, 224, 252, 232] and inde-
pendent set [29, 123] do not address multi-camera tracking problem, because the tracklets
are formed through the detections in consecutive frames (i.e., a short time window) of a
single view, whereas tracking with multiple cameras is to connect trajectories of targets at
di�erent times.

Besides the global optimization approach for MTMC tracking, there is another approach
that separates MTMC tracking into two steps: MOT on every single view, then linking
the trajectories across cameras [204, 121, 5]. A typical method in this category is the
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Constrained Dominant Set Clustering (CDSC) presented by Tesfaye et al. [204]. Given
an edge-weighted graph G = (V,E,w) (i.e., the unary cost is excluded), the goal of the
algorithm is to �nd a subgraph that contains all or some of the elements of the constraint
set, which forms a coherent and compact set for one individual. The method performs
tracking in two stages. The �rst stage is to determine trajectories (called tracklets in
the paper) of all targets in each camera, which is called within-camera tracking with the
formulation of Constrained Dominant Sets. To enhance the tracking tasks to be able to
manage the multi-entry/exit of targets, the authors proposed an additional data association
step to cluster the tracklets belonging to the same identities. A tracklet mentioned in the
paper [204] is a complete trajectory of an individual since it appears on the scene until
getting out of the scene. The a�nity between all considered detections is presented by
an a�nity matrix A = (ai,j) where ai,j is the weight of the edge w(i, j) connecting to
two nodes (detections) i, j. Solving the CDSC problem via linear quadratic program, they
obtain the clusters of trajectories on a single view, each cluster contains all motion history
of an individual, called a track of each target. On the second stage, the algorithm links
those tracks from all cameras, called across camera tracking. Similarly, a graph is built
from tracks as its node, whereas its edges are de�ned by a corresponding a�nity matrix
depicting the similarity between those tracks. At this time, the across camera tracking
stage releases the complete trajectories of targets on the whole camera network. The
illustration is displayed in Figure 2.33.
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Figure 2.33 � A general idea of the Constrained Dominant Set Clustering (CDSC) method.
(a) First, tracks are determined within each camera, then (b) tracks of the same person
from di�erent non-overlapping cameras are associated, solving the across-camera tracking.
Nodes in (a) represent tracklets and nodes in (b) represent tracks. The ith track of camera
j, T ij , is a set of tracklets that form a clique. In (b) each clique in di�erent colors represent
tracks of the same person in non-overlapping cameras. Similar color represents the same
person.[204]
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Using the similar MTMC scheme, Ristani et al. [180] extended the Correlation Cluster-
ing method [179] on multiple view tracking. The author proposed an appearance feature
learning method by �netuning a common CNN network, e.g., ResNet50 [99] under the
re-identi�cation scheme to maximize the ability to identify targets. The extracted features
of detections are the input of the Correlation Clustering algorithm to cluster the targets'
trajectories across cameras. Finally, the post-processing task is applied to remove the low-
con�dence trajectories and interpolate the missing detections. The overview of the method
is illustrated in Figure 2.34.
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Figure 2.34 � An illustration of the Ristani et al. [180] approach. Given video streams, a
person detector extracts bounding box observations from video. For trajectory inference,
a feature extractor extracts motion and appearance features from observations. These are
in turn converted into correlations and labeled using correlation clustering optimization.
Finally, post-processing interpolates missing detections and discards low con�dence tracks.
Multi-stage reasoning repeats trajectory inference for tracklets, single- and multi-camera
trajectories[180].

To categorize the MTMC tracking methods, we rely on particular aspects such as online
or o�ine methods, centralized or distributed systems, multiple camera tracking strategy
(global optimization vs two-step optimization). According to the computational model,
there are two branches of multiple camera tracking methods: centralized algorithms and
distributed ones. The majority of the MTMC tracking algorithms in the state-of-the-art
are centralized algorithms [237, 141, 240, 204, 180, 200, 201, 202, 119, 237, 167, 240, 37,
236, 64]. These approaches are generally suitable for o�ine tracking. On the other hand,
several algorithms have used a distributed computational model in an attempt to create a
probability map (see e.g. [81, 168]), meanwhile, the other papers [170, 195, 132] developed
the collaborative tracking frameworks to incorporate the tracking results across cameras.
Unlike the centralized algorithms, distributed multi-camera tracking algorithms are online.
To summarize the MTMC tracking methods, we classify them in the table 2.1.
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2.5. MULTI-VIEW OBJECT TRACKING

2.5.4 The re-identi�cation problem

In this section, we reformulate tracking as a re-identi�cation problem. As a partic-
ular case of people tracking within non-overlapping cameras, person re-identi�cation is
considered as a post-processing step in a multi-camera tracking system. Because person
re-identi�cation has many real-life applications, e.g., crime investigation, check-in security,
it has been studied intensively in the computer vision community over the last decade [247].
In the literature, person re-identi�cation is placed after tracking and detections within the
application pipeline of any camera system. Generally, Re-identi�cation (Re-ID) is de�ned
as a process of establishing a correspondence between images of a person taken from dif-
ferent cameras. Given an image or multiple images of an unknown person, called a probe
(or query), and a gallery which is a set consisting of known people and junk images which
represent the false positives from detections, the objective is to produce a ranked list of all
the people in gallery based on their visual similarity with the probe (the unknown person).
As a result, the highest-ranked match in the gallery will provide an ID for the unknown
person, thereby identifying the probe [19]. Figure 2.35 illustrates an end-to-end person
re-ID system.

Gallery

Detected Pedestrians

Cam 2, 3,…

Cam 1

…

(a) Pedestrian Detection (b) Person Re-identification 

Raw Videos

Figure 2.35 � The illustration of an end-to-end person re-ID system that includes (a)
pedestrian detection and (b) re-identi�cation[247].

In the Re-ID literature [247, 19], the Re-ID methods are categorized into two main
approaches: hand-crafted and Deep learning re-ID approaches. A hand-crafted re-ID ap-
proach consists of two fundamental components: a description gathering appearance fea-
tures of targets and a distance metric measuring the distance between appearance descrip-
tions. As mentioned in the section discussing the appearance features for data association,
appearance feature selections play a crucial role in identifying people. In human descrip-
tions, the most relevant feature is color, while texture features seem less useful and rarely
used. There are the enhanced features based on color and human body structure [76],
for example, the weighted color histogram (WH) assigns larger weights to pixels near the
symmetrical axis and forms a color histogram for each body part; and the maximally stable
color regions (MSCR) detects stable color regions and extracts features, such as color, area,
and centroid of these regions. Some methods enhance the RGB color model with CMYK
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2.5. MULTI-VIEW OBJECT TRACKING

and HSV models (Gray et al. [92], Mignon et al. [157], Das et al. [62]). In appearance fea-
ture hand-crafted re-ID approach, estimating the distance between two feature vectors via
a good distance metric is essential. According to the survey conducted by Zheng et al. [247],
in person re-ID, most papers used supervised global distance metric learning which learns
a non-linear function that maps feature vectors from a current space to another where the
mapping keeps same-class vectors gathered close and those of di�erent-class stay far apart.
The most commonly used distance metric is the Mahalanobis distance [126, 230, 220, 106],
which is a measure of the distance between a point P (probe) and a distributionD (gallery).
Figure 2.36 visualizes the results of projecting people (represented by feature vectors) into
an embedding space. Some works are using the supervised local distance metric learning
instead, such as David et al. [63].

Figure 2.36 � Visualization of di�erent identities on an embedding space. A small crop of
the Barnes-Hut t-SNE [209] of the learned embeddings for the Market-1501 test-set [104].

Since deep learning has emerged as an e�ective technique to adaptively extract char-
acteristic features, many works dedicated to using this technique in distance metric learn-
ing [187, 96, 94]. Indeed, deep metric learning is to learn a distance metric directly from
raw input data by a deep neural network. Supervised learning in classi�cation problems
principally learns a model from labeled data to classify the testing data into the prede�ned
labels in training datasets. However, metric learning, instead, is to learn a vector space in
which the similarity between two data samples is measured by the distance between them,
then on the learned metric space, we are able to cluster the similar samples in the same
class, meanwhile to well separate the samples from di�erent classes. Despite having good
representations via larger and better deep neural networks, setting up constraints for �sim-
ilar� and �dissimilar� pairs during training is another challenge to separate data without
labels, i.e., unsupervised learning. Many works such as Li et al. [140] and Zhang et al. [244]
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2.6. BENCHMARK AND PERFORMANCE MEASURE

attempted to formulate this as supervised learning, e.g. multi-class classi�cation problem.
However, the accuracy in the testing phase deteriorated as the presence of �foreign� classes,
not in the training dataset.

To alleviate this di�culty, pairwise losses have been introduced in [46, 192, 192]. Un-
like the classi�cation loss, which moves all samples to places with labels they belong to,
optimizing pairwise loss tends to minimize the distance between pairs in the same class,
i.e., positive pairs, while maximizing the distance between pairs in di�erent classes, i.e.,
negative pairs. The setback of this method is that the algorithm optimizes positive pairs
independently from negative pairs. With the purpose of making the training more e�cient,
[220] proposed the �triple� constraint that given a sample called anchor, the distance from
this anchor to a similar sample should be smaller than to a dissimilar sample. Therefore,
the triple loss aims to separate positive pairs from negative pairs by a margin [220, 169].
Nonetheless, methods with either pairwise or triple loss have to select pairs or triples to
create a training sample. Consequently, they have a complexity of O(n2) or O(n3), respec-
tively, with the number of samples n. To solve this issue, the author of the paper [169]
proposed the normalized Softmax and SoftTriple losses, which elevate the sampling phase
causing the expensive computational cost. There are many other methods with di�erent
losses, such as proxies [160] or class centroids [68].

As an e�ort to improve the accuracy of Re-ID task during the testing phase, some papers
by Barbosa et al. [15] and Zhong et al. [251] introduced hard training examples which are
typically generated by creating data augmentation. For clarity, we should mention that
in re-ID learning approaches, hard training examples are the examples gathered from the
di�erent identities but having relatively the same appearance. Zheng et al. [248] used
Generative Adversarial Network (GAN) for mining di�cult examples. In [227], the author
proposed a method to sample hard training data. [216] introduced the angular loss which
�nely �mines� hard training samples based on the angle between anchor, positive and
negative simple on an embedding space. An extensive experimental study conducted by
Almazan et al. [2] in 2018 on re-ID methods recommended good practices to achieve better
accuracy in person re-ID.

2.6 Benchmark and performance measure

In this section, we only discuss the benchmarks for MOT and MTMC algorithms. We
are aware that the Single Object Tracking community also uses another benchmark [228]
to evaluate SOT trackers, but this is not the main focus of this thesis.

Evaluating Multiple Object Tracking algorithms is a sophisticated and complex task.
Unlike the Single Object Tracking problem, MOT benchmarks have to take into account the
errors caused by the interactions between objects. For example, an object can suddenly
appear in the middle of a video, be hidden by other objects, which are also under the
tracking process, and then reappear. As a result of di�erent errors generated in di�erent
particular situations, a variety of indicators are being deployed in the MOT evaluation
process. Summarizing all these indicators, MOT benchmarks de�ne the universal scores
to grade each tracker to produce a more general look on methods. However, it is not
surprising that there are many benchmarks considering the success of the MOT tracking
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2.6. BENCHMARK AND PERFORMANCE MEASURE

process under di�erent aspects. Hence, a benchmark can be biased for several tracking
purposes. In principle, choosing one single performance measure that su�ces for all end-
users with di�erent needs is problematic.

In the state-of-the-art, Bernardin and Stiefelhagen [22] �rstly released the CLEAR1

metric for evaluating Multiple Object Tracking in a single camera. Since then, it has be-
come a standard metric in the MOT community. In 2015, Leal-Taixé et al. [134] introduced
MOTChallenge 20152 which is a Multiple Object Tracking benchmark. MOTChallenge
2015 includes a large collection of datasets, detections for all the sequences in datasets, a
common evaluation tool providing several measures and a website to summit the tracking
results of all MOT algorithms, for a fair comparison. The collection of datasets is rang-
ing from static camera sequences to moving camera sequences; it is subdivided into many
subsets of data for speci�c tasks such as 3D tracking, surveillance, sports analysis. All
these data subsets possess a training dataset with both detection and ground-truth of se-
quences, a testing dataset with only detections provided. After using training data to tune
the parameters of the MOT algorithms, the authors test their algorithms on testing data.
Then they are encouraged to submit their tracking results on MOTChallenge website3, the
evaluation results will be published later. In the meantime, Ristani et al. [178] developed
ID-measure in addition to a large datasets3 which are the videos recording the campus of
the University of Duke which are also divided into training and testing sequences. This
performance measure is suitable for both single or multiple cameras in general.

2.6.1 Multiple Object Tracking metric in single-camera and multi-camera

In general, a MOT benchmark consists of two main steps: matching tracker hypothe-
ses (i.e., computed identities) with ground-truth objects (i.e., true identities) (illustrated
in Figure 2.38 (a)) in each frame and computing the matching score based on tracking
hypothesis-vs-ground-truth trajectories on the entire video sequence (illustrated in Figure
2.38 (b)). In terms of the matching procedure, thresholding the hypotheses around the
ground-truth objects excludes some false positives out of the matching process (Figure
2.37). In 2D evaluation, only image plane coordinates are involved, the hypothesis-object
distance is evaluated by the Intersection over Union (IoU) ratio with a threshold of 0.5 [22].
In 3D evaluation, 3D world coordinates are used instead, and the positions of hypothe-
ses and objects are only considered on a reference ground plane, i.e., the z-coordinate is
always a constant and usually a zero-ground z = 0. The distance now is the Euclidean
distance between two positions, in meter, with a threshold of 1m [22]. Finally, only the
closest object-hypothesis pairs are matched, while all remaining objects and hypotheses
are treated as misses and false positives.

For the scoring step, the MOT benchmark grades the hypothesis-vs-ground-truth tra-
jectories matchings by accumulating the di�erent error types de�ned as follows:

• fpt is the number of false positives generated by the tracking algorithm at frame t,
and FP =

∑
t fpt is the total false positive.

1CLEAR standing for Classi�cation of Events, Activities, and Relationships
2https://motchallenge.net/
3http://vision.cs.duke.edu/DukeMTMC/details.html
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Figure 2.37 � A threshold T deciding whether the hypotheses are false positives or not.
The distance between the hyothesis h1 and the object o1 exceeds the threshold at frame
t+ 2 resulting in a false positive and a miss (i.e., false negative) [22].

• fnt is the number of true targets missed at frame t i.e., false negative, and the total
false negatives is FN =

∑
t fnt .

• tpt is the number of true positive detections at time t, and the total true positive TP
is TP =

∑
t tpt .

• Fragmentation occurs in frame t if a tracker switches the identity of a trajectory
in that frame, but the corresponding ground-truth identity does not change. The
number of fragmentations at frame t is φt, and the total fragmentation error Φ =∑

t φt

• Merge happens when trackers merge two di�erent ground truth identities into one
between frames t′ and t. The number of merges at frame t is γt, and the total merge
error Γ =

∑
t γt

• Mismatch is either fragmentation or merge µt = φt + γt and the total mismatch is
M =

∑
t µt

Figure 2.38 shows the di�erent types of errors in MOT benchmark. In the single view
multi-object tracking benchmark, based on the error types de�ned above, the Multiple
Object Tracking Accuracy (MOTA) is de�ned as follows:

MOTA = 1− FN + FP +M

T
. (2.2)

MOTA penalizes detection errors (FN+FP ) and mismatches (M) normalized by the total
number T of true detections. In principle, MOTA shows the frequency of making mistakes
of a tracker in terms of misses, false positives, mismatches, failures to recover tracks, etc.

The metric has become popular and been widely adopted by the MOT community to
measure the performance of MOT trackers. To extend the MOT metric in the context
of multi-camera tracking, in the paper of Cao et al. [35] and Ristani et al. [178], these
authors consider only the continuity of tracking between cameras. For example, an in-
dividual appears in the FOV of 2 di�erent cameras at di�erent times, the correct links
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Figure 2.38 � Illustration of the di�erent error types in MOT metric [22]. (a) Mapping
tracker hypotheses to objects shows false negatives (misses), false positives and the correct
tracking hypotheses i.e., true positives. (b) Mismatch error

between the trajectories of this individual from a camera to other measures the ability of
re-identifying this person across cameras regardless of the camera con�gurations (overlap-
ping or non-overlapping), which are called the handovers [178]. Cao et al. [35] proposed the
Multi-Camera Object Tracking Accuracy (MCTA) score, which considers all multi-cameras
aspects in terms of errors:

MCTA =
2PR

P +R︸ ︷︷ ︸
F1

(
1− Mw

Tw

)
︸ ︷︷ ︸
within camera

(
1− Mh

T h

)
︸ ︷︷ ︸

handover

. (2.3)

This score is the multiplication of the F1 score (where P is the precision, and R is
the recall), a "within camera" term which penalizes within-camera identity mismatches
(Mw) normalized by true within-camera detections (Tw) and a "handover" term which
takes into account wrong identity handover mismatches (Mh) normalized by the total
number of handovers. Notice that the upper script w and h indicate the "within-camera"
and "handover". However, Ristani et al. [178] pointed out that there are several issues
relative to the ability to preserve identities of targets. The CLEAR-MOT metric rates
the MOT trackers, which continuously following targets higher than those which might
switch the identities of targets multiple times to conserve their initial identities. This
metric is appropriate to evaluate the tracking systems, which prefer to observe events to
analyze further group behaviors (i.e., event-based measures). Meanwhile, for the users who
are interested in the applications, including sports, security, or surveillance, preserving
identities of targets is vital, it motivated the authors [178] to develop a novel identity-based
measure (called ID-measure) to ful�ll the need.
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Figure 2.39 � Illustration of Matching
the true trajectories (blue nodes) and
computed trajectories (green nodes)
at a single frame, The process oper-
ates on all frames to compute False
Positive ID (IDFP), False Negative
ID (IDFN), and True Negative ID
(IDTN).

To focus on conserving identities, the authors
propose to measure the performance of a tracking
algorithm not by how often mismatches occur, but
by how long the algorithm correctly identi�es tar-
gets. In detail, a bipartite graph G = (VT , VC , E)
is built from two sets of nodes VT and VC , and the
edges between them as follows:

• VT includes one �regular� node τ for each true
trajectory and one �false positive� node f+γ for
each computed trajectory γ.

• VC includes one �regular� node γ for each
computed trajectory and one �false negative�
node f−τ for each true trajectory τ .

• A set of edges connect each node on VT to
only one node on VC . Therefore, every (τ, γ)
match is a True Positive ID (IDTP). Every
(f+γ , γ) match is a False Positive ID (IDFP).
Every (τ, f−τ ) match is a False Negative ID
(IDFN). Every (f+γ , f

−
τ ) match is a True Neg-

ative ID (IDTN) (see the Fig. 2.39).

The mapping procedure occurs under a match-
ing condition when the distance between a computed target and a true identity has to
be smaller than a thresholding value ∆. Unlike the CLEAR-MOT metric of Bernardin
and Stiefelhagen [22], ID-measure uses the binary score m ∈ {0, 1} for every error values,
then the one-to-one matching is done by minimizing the cumulative false positive and false
negative errors, and the overall cost is the number of misassigned detections for all types
of errors. In other words, this cumulative error cost increments one every time an error,
e.g., miss, false negative, is found. After �nishing the mapping process, based on the opti-
mal Bipartite Matching, the IDFP, IDFN, IDTP scores are consecutively the sums of the
cumulative false positive, false negative and true positive over all matched ground-truth
trajectories and matched computed trajectories.

2.6.2 MOT and MTMC Datasets

In terms of Multi-Target Multi-Cameras (MTMC) tracking datasets, we aim to collect
the multiple view video sequences with camera calibration data. Therefore, most of the
dataset collection of the MOTChallenge 20154 is inadequate in our case study for many
reasons such as moving camera videos, single view sequences, non-availability camera cali-
bration information, or the asynchronization between cameras. As following, we list all the
MTMC datasets with calibrated and synchronized cameras found in the current literature.

4https://motchallenge.net/
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Figure 2.40 � Topology of camera network in the PETS 2009 datasets[78].

Firstly, the PETS2009 datasets by Ferryman and Shahrokni [78] are the most well-
known dataset in the Multiple Object Tracking community in both single and multiple
cameras contexts. In detail, the PETS2009 datasets are multi-camera sequences containing
di�erent crowd activities. The video sequences are made up of three types of crowd surveil-
lance characteristics/events within an outdoor scene. Many di�erent scenarios are made by
multiple overlapping cameras �lming approximately forty actors at a road junction. The
topology of these cameras is shown in Figure 2.40. More speci�cally, the challenge includes
the estimation of crowd person count and density, tracking of individuals within a crowd,
and detection of �ow and crowd events. All sequences are separated into three datasets:
the training dataset (Dataset S0) provides the background information in all views which
is in favor of background subtraction algorithms to detect people; the dataset S1 is for
person count and density estimation; the dataset S2 aiming to tracking applications con-
sists multiple sequences with di�erent crowded level; and the dataset S3 is used for Flow
Analysis and Event Recognition. The videos are made by two di�erent types of cameras;
one is more sensitive to the blue color frequency than another. Secondly, the Multi-camera

Camera 0 Camera 1 Camera 2 Camera 3

Figure 2.41 � The Terrace sequences in Multi-camera pedestrians videos EPFL dataset.
The sequences are made in outdoor scene by 7 people in front of 4 DV cameras, for around
3 1/2 minutes.
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pedestrians videos5 from a vision project of EPFL6 were presented in the MOT tracking
paper of Berclaz et al. [20] as the testing dataset for their detection and tracking frame-
work. The video sequences are realized by multiple overlapping and synchronized cameras
�lming the same area with di�erent angles. The camera calibration information is also
provided. These multi-camera video sequences consist of Laboratory sequences, Campus
sequences, Terrace sequences, Passageway sequence, and Basketball sequence.

Figure 2.42 � Topology of the 8 cameras
in the Duke MTMC dataset[180]. The red
spots indicate the view direction of cameras.

As a reference MTMC tracking dataset
of the ID-measure performance evaluation
for Multi-Target Multi-Camera Tracking al-
gorithms, Ristani et al. [178] released a large
MTMC tracking dataset more than 2 mil-
lion frames and more than 2,700 identities.
It consists of 8× 85 minutes of 1080p video
recorded at 60 frames per second from 8
static cameras deployed at the Duke Uni-
versity campus during periods between lec-
tures when the pedestrian tra�c is heavy.
The cameras are located at di�erent places
on the campus, and they are mainly non-
overlapping. Calibration data determines
homographies between images and the world
ground planes. All trajectories were manu-
ally annotated by using an interface they developed to mark trajectory key points and to
associate identities across cameras. Comparing to the existing MTMC datasets, this is the
largest dataset of multiple non-overlapping cameras �lming in a real-world environment.
The position of the camera network in Duke MTMC dataset is visualized in Figure 2.42.

5https://cvlab.ep�.ch/data/data-pom-index-php/
6Ecole polytechnique fédérale de Lausanne
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Chapter 3

Sparse coding for collaborative

tracking mono-object in multi-view

In this chapter, we present our �rst contribution to implementing particle-�lter-based
single object visual tracking methods on multiple camera systems. The tracking method
is based on the state-of-the-art particle framework, which is commonly used in most of the
Single Object Tracking (SOT) algorithms. In those SOT methods developed on single view,
the problem of occlusion arises while a targeted object moves in a complex environment,
and its entire movement cannot be observed and tracked fully. In various circumstances
of wild tracking videos, this is a typical unsolvable problem on single view tracking. This
raises the necessity of using multiple views to keep tracking occluded targets, which is
impossible in a single view setting. Our work focuses on implementing SOT methods in a
multiple view setting in order to solve the occlusion problem. Our approach relies on the
standard particle �lter framework, which is presented in detail in this chapter (Sec. 3.1).
To track targets in each view, we deploy the sparse representation to model target through
tracking procedure, which is described in Section 3.2. The following is the list of notation
used in this chapter:

xt The hidden state at time t
yt The observation at time t
X The state space of xt
Y The observation space of yt
x0:t The sequence of hidden states {x0, . . . ,xt} from 0 to t
y0:t The sequence of observations {y0, . . . ,yt} from 0 to t
p(x0) The initial distribution of the process' states
p(xt|xt−1) The transition model
p(yt|xt) The marginal distribution or the likelihood distribution
p(x0:t|y1:t) The posterior distribution of the sequence of states given a sequence of

observations up to time t
p(xt|y1:t−1) The prior distribution of the state at t given a sequence of observations

up to time t− 1
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{
x
(n)
0:t

}N
n=1

The particles to estimate a distribution{
w

(n)
t

}N
n=1

The weights of particles

PN (dx0:t|y1:t) The empirical estimate of the distribution p(x0:t|y1:t) via N particles
dx0:t The small quantized region at x0:t
δ
x
(n)
0:t

(dx0:t) The delta-Dirac mass located at x(n)0:t

y(n) The candidate of the nth particle
D The dictionary of the target
di The target template of the dictionary
ti The trivial template of the dictionary
a The coe�cient vector
Ck The kth camera in the camera network
st,k The sparsity level of targets at frame t on camera Ck
pk(yt|xt) The likelihood distribution on camera Ck
mk The value of update timer on camera Ck

3.1 Particle �lter framework

Particle �lter is a well-known technique of Sequential Monte Carlo methods [70] that
are used to approximate the unknown states of a process from the sequentially given
observations. In applications, the states of processes are modeled as Markovian, non-
linear, non-gaussian state-space models. In the visual tracking literature, the position
of objects is estimated from a given series of images captured by visual sensors, e.g.,
cameras. Therefore, the movement of an object is modeled in the temporal and spatial
space by a non-linear process whose states are the object's position evolving in time. Let
{xt; t ∈ N},xt ∈ X denote the hidden states of a Markov process with an initial distribution
p(x0) and a transition probability p(xt|xt−1). While {yt; t ∈ N∗},yt ∈ Y denotes the
observations which are conditionally independent given the process {xt; t ∈ N} and the
marginal distribution p(yt|xt). The described Markov model is summarized as follows:

(The initial distribution) p(x0)
(The transition model) p(xt|xt−1) for t ≥ 1
(The marginal distribution) p(yt|xt) for t ≥ 1

By convention, we denote x0:t := {x0, . . . ,xt} and y1:t := {y1, . . . ,yt}, respectively,
the sequences of the states and the observations up to time t. The ultimate goal is to
estimate recursively in time the posterior distribution p(x0:t|y1:t), its marginal distribution
or �ltering distribution p(xt|y1:t). Given a time instance t, the posterior distribution is
written through Bayes's theorem.

p(x0:t|y1:t) =
p(yt|x0:t)p(x0:t|y1:t−1)∫

X
p(yt|x′0:t)p(x′0:t|y1:t−1)dx′0:t

, (3.1)

or p(x0:t|y1:t) ∝ p(yt|x0:t)p(x0:t|y1:t−1). (3.2)
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Straightforwardly, this posterior distribution formula can be rewritten as a recursive form:

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
. (3.3)

Meanwhile, the marginal distribution p(xt|y1:t) is only computed recursively in two steps:
predicting the prior distribution p(xt|y1:t−1) and updating the marginal distribution p(xt|y1:t).
The prior distribution is predicted from the marginal distribution at time t− 1 by the fol-
lowing formula:

Prediction: p(xt|y1:t−1) =

∫
X

p(xt|xt−1) · p(xt−1|y1:t−1)dxt−1. (3.4)

The marginal distribution at time t is calculated from the obtained prior distribution.

Updating: p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫

X
p(yt|x′t)p(x′t|y1:t−1)dx′t

, (3.5)

or p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1). (3.6)

In SOT tracking algorithms, it su�ces to determine only the marginal distribution p(xt|y1:t).
According to the particle �lter framework in tracking algorithms, the movement of a

object is described by a hidden Markov model as follows:

xt = ft(xt−1,vt), (3.7)

yt = ht(xt,wt), (3.8)

where xt represents the hidden state at time t, yt the measurement or observation, ft is the
transition function of xt, ht is the measurement function, and vt and wt are independent
white noises. The initial Markov model at the beginning of the section is now being
transformed to adapt to tracking problem. Indeed, the transition model p(xt|xt−1) is
a deterministic function ft(.) with the inputs including the last state xt−1 (markovian
property) and a independent noise vt (randomness). The observation function ht(.) is the
mapping of the current state xt and a random noise wt to the observation space Y.

In the classic object tracking problem using the particle �lter framework, the hidden
state xt represents the pixel position of the target, being aware that various representations
of the hidden state have been proposed in the literature. As a textbook example, Ross et
al. [181] use xt = (xt, yt, st, αt) where xt and yt are the 2-D coordinates of (the center of)
the target, st is the scale parameter of the bounding box and αt is the aspect ratio at time
t.

Computing the integrals in the formulations (3.4) and (3.5) in the continuous domain
is impractical, because of the di�culties to determine the prior and posterior distributions.
However, in numerical computation, those distributions can be estimated via Monte Carlo
sampling. The particle �ltering framework for tracking simulates N independent and iden-

tically distributed (i.i.d) random samples, named as particles,
{
x
(n)
0:t

}N
n=1

according to

p(x0:t|y1:t). An empirical estimate of the distribution is given via Monte Carlo sampling:

p(x0:t|y1:t) ≈ PN (dx0:t|y0:t) =
1

N

N∑
n=1

δ
x
(n)
0:t

(dx0:t), (3.9)
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where dx0:t means the small quantized region at x0:t and δ
x
(n)
0:t

(dx0:t) denotes the delta-

Dirac mass located at x(n)0:t .

Nonetheless, in practice, tracking an object is to estimate a set of object's positions
from the beginning up to the time t. Therefore, the dimension of the states to be estimated
x
(n)
0:t grows dramatically with time and leads to the unfeasible computation. To solve this

problem, the perfect Monte Carlo (MC) sampling is replaced by a sequential MC approach,
named Sequential Importance Resampling (SIR). Hence, our aim now is to approximately
determine the marginal distribution of the current state given the observations up to current
frame p(xt|y1:t).

As described in [70], the hidden states of a target including its positions are de�ned
via the marginal distribution p(xt|y1:t) which is approximated by a weighted sum of N

Dirac masses δ
x
(n)
t

(dxt) of a set of particles
{
x
(n)
t

}N
n=1

of the state xt. The formulation of

the distribution p(xt|y1:t) is rewritten as follows:

p(xt|y1:t) ≈ PN (dxt|y1:t) =
N∑
n=1

w
(n)
t δ

x
(n)
t
, (3.10)

where x(n)t is the nth particle and w(n)
t is its weight which is calculated via a target-templates

comparison. In other words, the particles representing the coordinates of a target are
generated around its current location in order to cover its most potential positions in the
next frame.

Given an approximation of the distribution at time t−1, PN (dxt−1|y1:t−1) and the ob-
servation likelihood p (yt|xt), a bootstrap �lter is implemented to estimate the distribution
at time t, and it comprises three main steps:

1. The di�usion step consists in resampling a new set of unweighted particles
{
x
(n)
t

}N
n=1

from the empirical prior distribution PN (dxt−1|y1:t−1) which is the weighted particles

set
{
x
(n)
t−1, w

(n)
t−1

}N
n=1

.

2. The weight-computing step then computes new particle weights given the new obser-
vation yt, and normalize them:

w
(n)
t ∝ w(n)

t−1p
(
yt|x

(n)
t

)
, such that

N∑
n=1

w
(n)
t = 1. (3.11)

3. The update step is to add the weights
{
w

(n)
t

}N
n=1

to the unweighted particles,
{
x
(n)
t

}N
n=1
→{

x
(n)
t , w

(n)
t

}N
n=1

, which yield the estimate of p(xt|y1:t).

The visualization of the bootstrap algorithm is presented in the Figure1 3.1. Note that in
the propagating step/ di�usion step, the proposal distribution used in our experiment is a

1The �gure and notation from the original book [70] are modi�ed for clari�cation
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Visualization for N = 10 particles
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Figure 3.1 � In this example, the bootstrap �lter starts at time t−1 with an unweighted mea-

sure
{
x
(n)
t−1, N

−1
}
, which provides an approximation of p(xt−1|y1:t−2). For each particle, its

weight is computed from p(xt−1|yt−1) at time t− 1. This results in the weighted measure{
x
(n)
t−1, w

(n)
t−1

}
, which yields an approximation p(xt−1|y1:t−1). Subsequently, a new set of

unweighted particles
{
x
(n)
t , N−1

}
are resampled from p(xt−1|y1:t−1). Those unweighted

particles are still an approximation of p(xt|y1:t−1). Finally, we weight the particles to
obtain the estimate of p(xt|y1:t) [70].

normal distribution
x̃
(n)
t ∼ q

(
xt|x(m)

t−1, yt

)
= N (µ = x

(m)
t−1, σ

2). (3.12)

The particle representation and the observation yt are detailed in the next Section 3.2.

3.2 Sparse coding in visual representation

In this section, we discuss how sparse representation gets involved in the particle �lter-
ing framework and how the observation likelihood is de�ned. In each frame t, the particle
�lter generates a new set of particles. Each particle represents a possibility of the target
object, and it is assigned to an observation, which is called a target candidate. All target

candidates are denoted as
{
y
(n)
t

}N
n=1

. For convenience, we drop the subscript t out of

notation. In the generative approach for object tracking, an appearance model allows the
algorithm to select the best candidate among all candidates from the set of particles. Mei
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3.2. SPARSE CODING IN VISUAL REPRESENTATION

et al. [154] �rst introduced the sparse representation within the particle �lter framework.
The generative approach models the appearance of the target object as a sparse linear
combination of a set of templates. In detail, the object appearance is an image patch
extracted from the bounding box containing the target and all target candidates are rep-
resented in the same manner. This yields y(n)t ∈ Rd where d is the size of unrolled image
patch vector. Therefore, the particles contain the information of the bounding boxes such
as position, size, rotation angle. Each target candidate is approximated by a multiplication
of a coe�cient vector a ∈ Rp, whose elements are called atoms, and a redundance matrix,
called dictionary, whose columns are the unrolled image vectors of the target's templates
D = [d1, . . . ,dK ] ∈ Rd×p(d � p), such that the coe�cient vector a only contains a few
non-zero elements:

y(n) ≈ Da(n) s.t. ‖a‖0 is small w.r.t the vector size d, (3.13)

where ‖.‖0 is the 0-norm of a vector, which is literally the non-zero element-counting
operator of the vector. Finding the sparse coe�cient vector of a signal in the dictionary
is also called encoding the signal in the dictionary. Intuitively, a well-encoded signal has a
few atoms in its coe�cient vector, it means that the signal has been well-matched with the
words (i.e., templates) of the dictionary. In the tracking context, a well-encoded candidate
means the candidate has been found in the template dictionary, as well as the reliability
of choosing it as the target. The sparse solution a of the problem (3.13) is calculated by
minimizing the reconstruction error under the sparsity constraint:

a∗ = arg min
a

‖Da− y(n)‖22 s.t. ‖a‖0 ≤ m, (3.14)

In the papers of Mei et al. [154, 155], the authors added the trivial templates (positives
and negatives) E = [e1, . . . , ed,−e1, . . . ,−ed] where each ei is a Dirac impulse at location
i on a d-length vector, then the dictionary D is rewritten as:

D = [T,E] (3.15)

where T = [t1, . . . , tp], (3.16)

E = [e1, . . . , ed,−e1, . . . ,−ed]. (3.17)

During the tracking process, the targets' appearance often changes due to lighting, back-
ground, occlusion, or themselves. Although the target's images are well stored in the
dictionary, the encoded-vector a is not really sparse; in other words, it is not well repre-
sented. This is caused by a number of pixels on the area bounding the target, as illustrated
in Figure 3.2. To compensate those minor changes on sparse representation, the authors
added the trivial templates with the number of templates equally large as the number
of pixels of the image patch. Each trivial template compensates for only one pixel on
the image patch. Therefore, with a few pixels changing their intensity for the mentioned
reasons, the encoded vector a could still be sparse. Adding both positive and negative
trivial templates makes the encoded vector a contain only the non-negative elements. The
sparse representation model with trivial templates of Mei et al. [154, 155] is depicted in
the Figure 2.8. In addition to dealing with the changing of some pixels, solving a general
`0-norm optimization problem like Eq. (3.14) is also a hard problem [205, 83]. However,
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Bounding box

Area changing frequently

(background)
Occlusion area

Target 

(foreground)

Lighting change

Target changing itself

(a) Tracking result (b) Template in the dictionary

Figure 3.2 � Illustration of the possible appearance changing in tracking videos

its optimal solution can be approximated by resolving its `1-norm form. Those sparse lin-
ear coe�cients are computed as the solution of an `1-penalized non-negative least squares
problem:

a
(n)
∗ = arg min

a≥0
‖a‖1 + λ‖Da− y(n)‖22, (3.18)

for �xed λ > 0. In our implementation, we use the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [16] to solve Eq. (3.18).

For each candidate, we compute an error of reconstruction which is de�ned as an
objective function in Eq. (3.20). These errors yield the weight of particles in order to
empirically approximate the likelihood distribution p(yt|xt) mentioned in Eq. (3.5) and
(3.11).

p(yt|xt) ∝ ‖Ta∗ − y‖2. (3.19)

The target's estimate is the candidate with the least error among them, that is y∗ = yi∗ ,
where

i∗ = arg min
1≤n≤N

‖Ta(n)∗ − y(n)‖2. (3.20)

The set of templates T is updated regularly to adapt to illumination or pose changes and
keep the tracker from drifting o� the actual target. Moreover, after choosing the best
candidate for target, we measure a score to detect the occlusion of targets, called the
sparsity level, de�ned as follows:

st,k =
#activated atoms of a(n∗)

Size of the dictionary D
(3.21)

Finally, the importance weights w(n)
t are re-computed for each particle and then, the

re-sampling step regenerates the particles at time t + 1 based on the weighted measures
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{
x
(n)
t , w

(n)
t

}
. In the literature, most of sparse tracking approaches try to estimate the

observation likelihood in many di�erent ways, for example, [155] uses a Gaussian model
whose mean is related the reconstruction error. The next section details our approach of
collaborative tracking with multi-camera setting.

3.3 Collaborative multi-camera tracking framework

As we mentioned previously, one of the main challenges of object tracking with a
single camera is to cope with long-term occlusion or hard occlusion. In a single view, a
target disappears while tracking and then reappears again, its trajectory between those
two moments can be implicitly inferred, but not explicitly determined. For this reason, we
propose to utilize a set of cameras covering the tracking area from various angles to address
this issue, as well as gain reliability and accuracy. This section shows our multi-camera
approach to incorporate the tracking results of single cameras in order to improve further
the robustness of tracking a single object. We assume that the di�erent cameras have
overlapping �elds of view and that they are frame-synchronized and calibrated. While we
do not precisely specify the hardware capabilities needed to implement our method, we
assume that each camera has enough computing power to implement a sparse tracking
algorithm. As described earlier, the camera tracks targets on its own video stream, and
then compute the 3-D coordinates of targets by using calibration data. Finally, each pair
of cameras can exchange lightweight information in the form of 3-D coordinates of a set of
points.

Our method exploits the natural observation that target appearance and occlusions
generally a�ect only a dynamic subset of the available cameras. This is illustrated on a
synthetic video in the �rst row of Fig. 3.3 where we present four di�erent views of the same
scene. The target object is occluded in the view associated with Camera 2 but visible in all
the other views. The crucial point is that, in our algorithm, all these views collaborate to
estimate the position of the target in the frame captured by Camera 2. This is accomplished
by projecting the candidates of Camera 2 into Cameras 1, 3 and 4, using calibration data
and then sparsely coding each projected candidate in the local dictionary of each Camera
i ∈ {1, 3, 4}. The center point of these candidates and their projections are shown in
the second row of Fig. 3.3. For convenience, we use the term same "particles" for point
clouds, which are the two elements of the state vector of particles {xt, yt} mentioned in the
previous Section 3.1.

We use the reconstruction errors of the local particles and the overall sparsity level of the
representation in order to detect the local scene and object variations, and in particular,
occlusions. The next subsections detail the di�erent points of implementation to solve
di�erent practical issues. We begin with a critical issue while using the particles from a
single view to estimate the empirical distribution for another view.

3.3.1 Common ground-plane particle �lter

This section describes a critical issue of using the local particle �lter in a collaborative
tracking approach with multi-cameras, which is mentioned at the beginning of Section 3.3,
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Figure 3.3 � Illustration of the multi-camera collaborative tracking approach. From left
to right: frame 66 of Camera 1 (F66C1) (no occlusion), F66C2 (occlusion), F66C3 (no
occlusion), F66C4 (no occlusion); First row: the particles in view 2 (green) are projected
into other view (blue). Second row: the projected particles on the ground plane into each
single view. Third row: same as second row but particles are spreading directly on the
common ground.
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as well as our proposed approach. In practice, projecting the particles from one camera
into another makes the distribution estimate on that camera change, which means that
the distribution of particles no longer represents the initial empirical distribution p(xt|y1:t)
on neither the initial view or the perspective view. The distribution on the image plane
(i.e., 2D space) in each camera is not the distribution of the "presence" probability of
the target on the 3D space and the other views either. An illustration of this problem is
provided in the second row of the Figure 3.3 where the particles (i.e., the center points
of the candidates) in Camera 2 are projected into the other ones. The distribution of
the particles projected into Camera 4 quite resembles those in the initial view (Camera
2), while those on the other's view (Camera 1 and 3) is spreading and oriented toward
the direction of Camera 2. In this illustration, when the local point cloud of candidates
in a camera is slightly displaced, then its corresponding projections into other cameras
may stand out of the target. Unquestionably, the angles made by camera-object-camera
and camera-object-plane directly a�ect the distribution of particles between the di�erent
views, and this local particle projection into other views ine�ectively approximates the
distribution of the target.

To overcome this serious problem, we propose a novel particle �ltering setting in which
we change the coordinates of the particles from pixels in the image plane to meters in
the z = 0 plane (the ground plane) of the 3-D world. In other words, instead of using
the particle �lter on the image plane, we deploy them directly to the plane z = 0 of the
real world. The third row of Fig. 3.3 shows the result of implementing this strategy on
a synthetic video. The spread of projected particles (the blue ones) should be contrasted
with that obtained in the second row, where a standard image plane particle �lter is
applied. One can indeed see that the spread of the candidates is less a�ected by a camera
change. This does not only facilitate the collaborative process between cameras but also
reunites all the variance coordinates of the di�erent cameras into one. In comparison with
the image plane particle �ltering, where one target has di�erent a�ne parameters in each
view, the novel common ground-plane particle �lter makes all the views share the same
parameters. This means that all cameras in the network perform particle �ltering with
the same parameters in order to track the same target. The changes of particle �lters
from image planes to a common ground-plane lead to the reformulation of the likelihood
distribution (3.19) on each view.

p(yt,k|xt,k) = p (Gk(yt)|Hk(xt)) = pk(yt|xt) ∝ ‖Tka∗ − yk‖2 (3.22)

where : k = the camera number

Gk(y) = yk

Hk = the homography function converting the points

on image-plane to ground-plane of Camera k

On each view, the likelihood distribution pk(yt|xt) are de�ned as Eq. (3.22). Notice
that y is the multi-view observation vector consisting of all observations on single view
yk. The visualization of common ground-plane particle �lter performing on the dataset
PETS09-S2L1 is presented in the Figure 3.4.
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(a) Camera 1 (b) Camera 6 (c) Camera 7

Figure 3.4 � Visualization of the common ground-plane particle �lter in multi-camera
tracking

3.3.2 Template update strategy

One of the main problems of visual tracking, which is set to be explained in this section,
is the over-updating of the appearance model. In reality, target objects usually change
during tracking videos due to self-variation (i.e., non-rigid object), lighting condition, pose
changing. Therefore, regularly updating the target's appearance is necessary to maintain
a good track. However, updating the appearance model every frame can result in a severe
issue, called drift problem, which is observed when the appearance templates are gradually
shifted or drifted out of the actual target after a long time of tracking. An example of the
drift problem is illustrated in the Figure 3.5.
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Figure 3.5 � An example of drift problem in [153]. The �rst row illustrates the tracker is
failing to track the car after not updating any new target's appearance at all. The second
row shows the templates being updated every frame which leads to the undesirable updates
resulting in drift problem.

In our framework, the issue of updating the templates dictionary becomes worse, es-
pecially for non-rigid object tracking. To address this typical issue, we propose several
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techniques while updating the target's dictionary. Firstly, we consider that the target is
being occluded if the sparsity level st of the chosen candidate is greater than a prede�ned
threshold ε1. Otherwise, the candidate is the target's estimate for tracking results. As
discussed in Sec. 3.2, smaller the sparsity level is, the more the current candidate looks like
the initial templates in the dictionary. For an accurate update, st needs to be much smaller
than ε1 and we choose another threshold ε2 < ε1 to put the candidate in the dictionary (if
st < ε2). If the sparsity level st stands in between ε2 and ε1, the target is considered as
being partly occluded or having a brutal appearance variation. In this case, the dictionary
does not update any new template.

�1 �2 

Figure 3.6 � The di�erent sparsity levels to determine if the target is occluded or reliable
to update. When st < ε2, it is safe to update the target template into the dictionary,
otherwise, it is too ricky to update. When the sparsity level st exceeds ε1 value, that
triggers the collaborative tracking process between cameras.

Secondly, as an e�ort to keep the updates precise, we lighten the update requirement by
adding a condition about the disparity of particle distribution on the ground plane between
cameras, which is the Bhattacharyya distance between the particle clouds in di�erent
cameras on the ground-plane. This distance is supposed to be smaller than a separative
threshold distance ρ to con�rm the position of the target. This means that there is no drift
problem detected on any view because the possibility of the trackers from all views being
drifted toward a direction at the same time is relatively insigni�cant. In detail, when a
camera wants to update the appearance templates of its target, it performs a con�rmatory
check by measuring the distance between its estimated distribution (the set of particles) and
those from the other cameras tracking the same target. Therefore, the distance between
two distributions from two cameras Ck and Cl are measured by the Bhattacharyya formula:

d(Ck, Cl) = DBhattacharyya (pk(xt|yt), pl(xt|yt)) (3.23)

If those distances are all smaller than a prede�ned threshold distance ρ, the target is
available to update, otherwise, it is not. The separative thresholding is illustrated in the
Figure 3.7.

The additional condition for updating the target template on a single camera Ck, f(k),
is reformulated as follows:

f(k) =

{
1, if ∀i 6= k, d (Ck, Ci) < ρ.

0, otherwise.
(3.24)

Finally, we set up an update timer mk as well to prevent our algorithm from over-
updating. This counter is incremented after each frame, and the update process does not
occur unless the counter exceeds a minimum update time τ . The counter is reset once
the update is operated. More details can be seen in Alg. 3. The next section discusses
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Separative threshold 𝜌 

Bhattacharyya distance

𝑝1(𝒚𝑡|𝒙𝑡) 

𝑝2(𝒚𝑡|𝒙𝑡) 

𝑝3(𝒚𝑡|𝒙𝑡) 

𝑝4(𝒚𝑡 |𝒙𝑡) 

Figure 3.7 � The separative thresholding to con�rm the target's position to avoid drift
problem.

the architecture of our multi-camera setting, which prevents errors from propagating in
the camera network, as well as, allows multiple cameras to collaborate e�ectively to track
individuals moving between di�erent FOV of cameras inside the network.

3.3.3 Network architecture for recovering tracking state and propagat-

ing error prevention

This section details the camera network architecture of our multi-camera tracking
framework. The architecture promotes cameras to communicate with each other their own
tracking results for their collaboration and to recover the tracking process of the cameras
whose targets are lost while preventing the false tracking result from propagating inside of
the network.

In practice, there are signi�cant problems when implementing the tracking algorithm
in multiple cameras. Firstly, since a target is not necessarily present in all the FOV of
cameras all the time, it might appear and disappear in certain cameras. In other words,
when a target moves around the tracking area, it is often the case where only a subset
of cameras can see it, and this camera subset changes following the target's position. To
address this issue, we develop a feature to manage all the exits/entries for each camera.
Concretely, our algorithm pauses the tracker of a particular camera if the target leaves its
FOV. Secondly, when the target returns into its FOV, our algorithm resumes the tracker
and informs the new position of the target. To support this algorithm, we set up our
camera network as a star network with a center camera and its neighbor cameras. The
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main camera has the largest view, among others. It brings a privilege for the collaborative
tracking fashion described previously for several reasons. First, the main camera observes
most of the scene, and it is favorable to acknowledge and con�rm to others when a target
is entering into their FOV or whether it is the same target which used to be tracked in
previous frames. Secondly, in the case of the main camera losses a target, e.g., occlusion,
the other cameras help it to localize the target during the occlusion. Figure 3.8 illustrates
the communication between cameras inside a star network model.

Collaborative tracking

Trigger tracking process

Figure 3.8 � The star topology for collaborative multi-camera network.

Furthermore, this architecture eliminates the early tracking error from a single cam-
era which potentially spreads in the network, because the communication is established
between the center node with its peripheral cameras. All collaboration must go through
the center camera, so in the case, the error contaminated the center node, this tracking
result will quickly be removed while comparing it with other peripheral cameras whose
results are more reliable. Finally, the star topology leads to a strong computational bene�t
comparing with a complete graph topology. In turn, when the master camera loses the
target, it recovers its state from other cameras. In detail, as a camera recognizes that
another one is missing the target, it projects all its particles to the other one, which will
encode these candidates. If the target were found among them, the tracking-state in this
view would be reestablished. This whole star topology could prevent the false tracking
result of one camera from contaminating other ones. The detailed steps are summarized in
Algorithm 2. In the next section, we will detail the collaborative tracking procedure inside
our multi-camera setting.
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Input : K cameras C1, . . . , CK , ε1 and ε2 occlusion sparsity thresholds, λ in
Eq.(3.18), τ : minimum update time, ρ: separative threshold distance

Output: Trajectory of the target in each camera

1 Initialization of each camera;
2 Main loop:
3 foreach frame in videos do
4 foreach camera Ck do

5 if Target appears in observable zone then y
(n∗)
t,k , st,k ←Auto-tracking in

Sec. 3.2;
6 else break;
7 if st,k < ε2 then
8 Set non-occlusion state for Ck;

9 Select the candidate y(n
∗)

t,k as the target;

10 else

11 Set occlusion state for Ck;

12 Project the particles of Ck into Ck′ , k′ 6= k, get the candidates y(n)t,k′ ;

13 Sparse coding y(n)t,k′ by Eq.(3.18) on Ck′ 's dictionary ;

14 Select y(n
∗)

t,k′ as Eq.(3.20);

15 end

16 γ ← Bhattacharyya distance of the particles of Ck and all those of others
cameras;

17 if γ < ρ & st,k < ε2 & mk ≥ τ then Update the dictionary and mk ← 0 ;
18 else mk ← mk + 1;
19 if Target missing then Get target's position from Ck′ , k

′ 6= k by Algo. (2);
20 end

21 end

Algorithm 1: Single-object Online Multi-camera Collaborative Tracking

101



3.4. THE PROPOSED ALGORITHM

Input : Ck successfully tracks the target, C ′k whose target is missing, t: frame, ε
occlusion sparsity threshold, λ in Eq.(3.18)

Output: Ck′ with the state-tracking recovered

1 if Target in FOV of Ck′ then

2 Project the particles x(n) of Ck into the image plane of Ck′ , then get the

candidates y(n)t,k′ , 1 ≤ n ≤ N ;

3 Sparse coding for each y(n)t,k′ as Eq.(3.18) ;

4 Compute the reconstruction error for each y(n)t,k′ with the templates in its

dictionary;

5 Select the candidate y(n
∗)

t,k′ as Eq.(3.20);

6 Compute the sparsity level st,k′ ;
7 if st,k′ < ε then Accept the recovery;
8 else Reject the recovery;
9 end

Algorithm 2: Recovery of tracking state

3.4 The proposed algorithm

In this section, we concretely describe our collaborative tracking approach in the multi-
camera setting. Given a set of cameras {Ck}Kk=1, each camera �rst projects the particles
of the target on its image plane and sparsely encodes the candidates extracted from these
particles y(n)t,k with its local dictionary Dk as we described in Sec. 3.2. Next, the weight of
each particle is assigned with the reconstruction error (Eq. (3.19)) of its corresponding can-

didate as the weight update step as Eq. (3.11). Those weighted particles
{
x
(n)
t,k , w

(n)
t,l

}N
n=1

yields the empirical likelihood distribution
{
p
(n)
k (yt|xt)

}N
n=1

, or
{
p(n)(yt,k|xt,k)

}N
n=1

. In

the case of failure (e.g. occlusion detected or target missing) which is signaled by the spar-
sity level st exceeding the limit threshold ε1, the current camera Ck demands the cameras
Ck′ , k′ 6= k, whose target is not occluded, to process a substitute encoding of the particles
on Ck. Notice that during this "backup" sparse coding on Ck′ , the coordinates of particles
are taken from the initial camera Ck, and the candidates are built up with the parameters
and image frame from Ck′ . In other words, the local empirical likelihood estimate on Ck
is replaced by an alternative empirical likelihood estimate done by Ck′ :{

p
(n)
k (yt|xt)

}N
n=1
≈
{
p(n)(yt,k′ |xt,k)

}N
n=1

(3.25)

It is worth noting that the parameters needed to compute a bounding box in each camera
Ck′ are not sent by Ck, but the algorithm uses each camera's current own scale and aspect
ratio parameters. Finally, having the substitute likelihood estimate from Ck′ , the particle
with the least reconstruction error is chosen as the position of the target on Camera Ck.
Eventually, the substitute distribution replaces the old likelihood distribution on Camera
Ck, which is needed for the di�usion step in the next frame. The entire algorithm is shown
in Alg. 3.
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In our framework, we also develop a feature to recover the tracking state of the cameras
whose targets are being missing by tracking failure or just entering their FOV. In reality, a
camera might lose its target during tracking process by many reasons, being able to recover
its tracking process of every single camera makes the multi-camera network more robust
and accurate in the context where a target can move in or out of FOV's cameras multiple
times during tracking videos. The general idea is that any camera can be signaled to resume
its tracking process at any time after losing its target by another camera. Indeed, in every
frame, the algorithm checks if, for every single camera, an individual being tracked by other
cameras is present in its FOV. If it is the case, the camera receives the set of particles from
one other camera and starts encoding the candidates extracted from those particles with
its exiting dictionary Dk. In the case when the best candidate found is well represented via
its low sparsity level, this resumes the tracking process on the camera Ck. The detail of the
recovery procedure is shown in Algorithm 2. The next section will reveal the experiments
conducted on a Multi-Camera dataset, which validates the e�ciency of our multi-camera
approach comparing with single-camera ones.

3.5 Experimental results

In this section, we present the experimental results obtained from our collaborative
multi-camera approach to track mono-object. In the literature, numerous benchmark
datasets have been developed for generic object tracking [7, 130, 181]. However, most
of them are not dedicated for multiple view tracking problems, because they are realized
in a single view, or some of them used the cameras moving and being carried by a person
which are not for surveillance purpose that we seek for. Some datasets do not provide any
calibration information of cameras such as the USC Campus [129]. Otherwise, DukeMTMC
datasets [178] is large, and its overlapped zones are relatively small and with the purpose
of a re-identi�cation benchmark. Fortunately, with multiple calibrated, synchronized cam-
eras having an overlapped zone, the PETS2009 [78] dataset is the best option for our
purpose. For our experiments, we use the sequence �S2L1� which are noticed for tracking
purpose by the authors [78]. The sequence �S2L2� is un�tting because of the limit of the
two synchronized views and the density of crowds. For assessing the performance of our
method, we set up a variety of multi-view con�gurations, including three views (158, 168
and 178), four views (1678), and six views (135678). We choose to track the person with
ID 1, which has the most complex trajectory in the video Fig. 3.9, but the other targets
could have the same evaluation. For the evaluation metric, we use the average overlap
score (AOS) [74], a commonly used metric for object tracking evaluation [228]. The AOS
score is straightforwardly the average of the Intersection over Union (IoU) score on the
entire image sequence.

In order to prove the e�ciency of our approach, we compare our multi-view method
with the single view version, which is originally the L1 tracker [155] with the particle
�ltering on the ground plane as described in Sec. 3.1. We also note that the sparse
tracking algorithms such as [250] [155], [112], [95] can leverage our framework to work in a
multiple cameras setting. We followed this line by extending Sparsity-based Collaborative
Model (SCM) [250]. The results in Tab. 3.1 clearly demonstrate the e�ectiveness of using
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Methods View Single Multiple view
view 157 168 178 1678 135678

1 0.553 - 0.630 0.636 0.573 0.612
L1[155] 5 0.433 0.575 - - - 0.611

8 0.340 - 0.566 0.616 0.604 0.611
1 0.489 - 0.544 0.508 0.466 0.521

SCM[250] 5 0.394 0.517 - - - 0.566

8 0.479 - 0.630 0.636 0.573 0.612

Table 3.1 � Comparison of single-view methods with di�erent multiple view con�gurations.
The bold value represents the best result on each line.

multiple views to help a single view to track the identity while being hidden. Signi�cant
improvements are shown in both baseline single-view methods L1 and SCM. The score
increases from about 2% to 27.1%, depending on con�gurations.

Methods view 1 view 5 view 8

MIL[7] 0.159 0.315 0.100
TLD[116] 0.171 0.182 0.119

BOOSTING [90] 0.039 0.260 0.175
STRUCK[95] 0.321 0.282 0.175
KCF[102] 0.138 0.018 0.013
ASLA[112] 0.478 0.541 0.506

SCM[250] 0.498 0.394 0.479
Baseline-L1[155] 0.553 0.433 0.340

SCM Multi-view 0.508 0.542 0.578

L1 Multi-view 0.630 0.593 0.608

Table 3.2 � Comparison of State-of-the-art meth-
ods to our multi-view method on the �PETS09-
S2L1�

Alternatively, we compare our method
to several algorithms in the literature
including Multiple Instance Learning
(MIL) [7], Tracking Learning Detection
(TLD) [116], Kernelized Correlation
Filters (KCF) [102], STRUCK [95]
and Adaptive Structural Local Sparse
Appearance Model (ASLA) [112]. The
results are shown in Tab. 3.2 with the
median values of the multi-view ap-
proaches over di�erent con�gurations in
the last rows. The superiority of our
approach can be seen while comparing
to the single-view tracking algorithms in
the state-of-the-art.

To qualitatively evaluate the e�ec-
tiveness of our approach, Fig. 3.9 shows
the results of TLD [116] and our method with the con�guration cam168. As a result of
tracking with a single view, TLD could not track the identity while being hidden by the
road sign, but with two collaborative views, the proposed algorithm had this capacity
instead.

To end our experimentation, we investigate the impact of parameters on multi-camera
tracking process. As mentioned above, there are many parameters to adjust in di�erent
steps of tracking process including variance σ in particle propagation (3.12) in particle
�lter, the thresholds ε1, ε2 (3.6) determine occlusion levels of targets, or separative threshold
ρ (3.7). However, the factor having the most direct impact on the collaboration between
cameras when occlusion occurs is the proposal distribution, which de�nes where to �nd
target in the next frame. In addition, the dispersion of the particles around a target e�ects
the ability of being processed by neighbor cameras, because if no camera �nds any close-
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Frame #30 Frame #34

view1

view8

Figure 3.9 � Visual results with the yellow, blue and red boxes are respectively the ground-
truth, TLD [116] and our multi-view method.

by particle �cloud� (via a separative threshold ρ), the collaborative tracking will not be
applied. Hence, the variance σ = [σx, σy, σh, σw] appears to be most impactful in this the
study. In this experiment, we varied only position variance σx, σy from 120 to 220, the
others remain constant.

σxy MOTA MOTP

120 27.241 66.418
120* 28.04 66.723
150 28.753 66.778

150* 28.047 66.725
175 26.516 66.346
175* 27.485 66.428
200 26.448 66.321
200* 29.259 66.468
220 24.742 66.232
220* 29.583 66.529

Table 3.3 � Impact analysis on dif-
ferent con�gurations. This is the ex-
ample of σxy The bold value rep-
resents the best results. *: Experi-
ments with the star topology camera
network 3.8.

As the �nal objective of tracking is applying in
general multiple object tracking case, we deployed
our approach on all targets on the sequence and
use MOT-CLEAR [22] to evaluate the performance
2 main scores MOTA-Multiple Object Tracking Ac-
curacy and MOTP-Multiple Object Tracking Pre-
cision. We tried implementing our sparse coding
tracking approach on the MOT context, but due
to the mis-managing trackers when multiple targets
interacting during their movement, the initial ap-
proach could not produce desired outcome. There-
fore, we replaced sparse-coding-based part by a more
determinist approach (KCF-Kernel Correlation Fil-
ter [102]) meanwhile keeping the proposal parti-
cle propagation. We also recorded the collabora-
tion times between camera pairs. The result table
Tab. 3.3 shows the optimal value of σxy at 150 (for
full graph network model) and at 220 (for star graph
network model). When we increase the variance σxy
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Figure 3.10 � MOTA score in function of variance σxy. The performance of collaborative
star-network camera model shows its e�ciency on preventing error propagation across
camera network.

from the optimal value 150 to 220, the tracking per-
formance decreases rapidly, because of the spread of the inaccurate tracking results trans-
ferring in the camera network. This can be implied from the collaboration record showed
the �gures 3.11 a) and c). The number of the demands for collaborative tracking in each
camera dramatically rose when the high-value of σ facilitates collaboration. Consequently,
the collaboration also promotes the error propagation inside the full-graph network. Mean-
while, within the star graph model for collaboration, even though the value of σ is high,
the error is more likely to be contained locally (see Fig. 3.11 b) and d)) . As a result, the
camera star-network remains (or even increase) the tracking performance (Tab. 3.3 and
Fig. 3.10). Besides the analysis retreated above from the collaboration tables Fig. 3.11, the
records also show us that the view 8 and 6 are the most demanding views, as they observe
most movements of the actors on the scenes.
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a) σxy = 150, full graph network b) σxy = 150, star graph network
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c) σxy = 200, full graph network d) σxy = 200, star graph network

Figure 3.11 � Collaboration record between cameras in Sequence PETS09-S2L1 with dif-
ferent propagation values σxy. Rows indicate demands sending to other cameras when
occlusion occurs. Columns indicate demands receiving from other cameras. The �gures on
the left use the full graph model for collaboration between cameras, those on the right use
the star model described in Fig. 3.8
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Chapter 4

Multiple object tracking: Target

association across multiple cameras

This chapter presents our multi-camera framework that allows a single camera to col-
laborate with other cameras of the network in order to enhance tracking performance.
Our approach adopts a Multiple Object Tracking framework for multiple Single-Object-
Tracking trackers in a multi-camera setting. This chapter is separated into three sections.
The �rst section describes our multi-camera tracking framework to handle target occlusion,
which involves associating targets across di�erent views. Therefore, in the second section,
we introduce our �rst association method to match targets in all cameras, which is based
on graph-based clustering. The �nal section presents our second association method to
assign targets in pairs of cameras, in which we reformulate the assignment problem as an
unbalanced optimal transport. The experimental results show the e�ciency of the multiple
cameras system for multiple object tracking in comparison with single camera systems. For
convenience, we list all notations used in this chapter as follows:

vkm The mth target in the camera k
V The set of nodes representing targets {vkm}
E The set of edges connect nodes
G = (V,E,w) The full graph associating targets across all cameras
Ck = {vk1 , ..., vkM} The cluster of targets in the camera k
Gs = (Vs, Es, ws) The subgraph of the full graph G indicating a speci�c iden-

tity
Vs = {vkm|k ∈ {1, ...,K}} The set of targets across views of an identity
Es = {E(p, q)|p, q ∈ Vs} The set of edges linking all targets in the subgraph Gs
ws = {w(p, q)|p, q ∈ Vs} The set of weights assigning to each edge in Gs
T = {vkj }Nj=1 The set of tracker representing targets {vkm}
xk,im The coordinate of the target vkm at frame i
xkm = {xk,1m ..., xk,Fm } The trajectory feature vector of the target vkm
Φk
m The bounding box of the target vkm at current time

fapp The appearance feature distance function
ftraj The trajectory distance function
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α, β The discrete measures with weights, called respectively as source and
target

δx The Dirac at position x
a ∈ Rn

+, b ∈ Rm
+ The weights of discrete measures

P ∈ Rn×m
+ The optimal transport plan (i.e., coupling matrix) matching from a

source set of n elements to a target set of m elements
C ∈ Rn×m

+ The distance matrix or pairwise cost matrix
f ∈ Rn

+, g ∈ Rm
+ The potentials which are dual variables from the dual problem of optimal

transport
R(C) The set of admissible dual variables
LC(a,b) The optimal cost in Kantorovich's problem given a distance matrix C
H(P) The entropy of a distribution P
ε, τ The regularization parameters

4.1 General online multi-camera multi-object tracking frame-

work

This section details our multi-camera tracking framework, which mainly focuses on
using multiple cameras to tackle the occlusion problem in tracking, as discussed previously.
This framework requires multiple cameras in the network that has overlapping �elds of
view. In order to incorporate the results of every single view, all cameras need to be well-
calibrated and synchronized. Having all tracking results from all cameras, an association
process matches, across cameras, the trackers that belong to the same identities. Since
the association result is available, when one camera loses its target (e.g., occlusion, out of
�eld-of-view), it is possible to trace back its missing targets from the tracking results of
other cameras in case of the target reappears again.

4.1.1 Tracker management in online multi-camera multi-object algo-

rithms

In this section, we present the mechanism of organizing multiple SOT trackers to track
multiple objects simultaneously in a multi-camera setting. As mentioned in the chapter of
the state-of-the-art, one of the most challenging problems of implementing SOT algorithms
to perform MOT tasks is to manage and organize all SOT trackers to avoid redundancy,
identity switches, as well as, to deploy detections in every frame e�ciently.

Adopting the Markov Decision Process (MDP) framework of Xiang et al. [229], any
individual in the FOV of each camera is supposed to be tracked by a SOT tracker. As
a Markov Decision Process, a tracker possesses 3 possible states: active, inactive, tracked
and lost. The MDP model of Xiang et al. [229] is illustrated in Figure 4.1. The state
of trackers moves through these states which correspond to di�erent situations from the
beginning to the end:

• Initialization: When a tracker is created from a detection, it possesses the �active�
state.
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Figure 4.1 � The Markov Decision Process for a single SOT tracker.

• Tracking in process: When a tracker succeeds to track its target at the current frame,
it possesses the �tracked� state.

• Tracking pause: When a tracker loses its target at the current frame, it possesses the
�lost� state.

• Finished tracking: When a tracker stops to track its target, it possesses the �inactive�
state.

The Markov Decision Process is completed by de�ning the deterministic transitions allow-
ing the tracker to transfer between the possible states:

• If an �active� tracker (i.e., new born tracker) is classi�ed as a false positive, the state
of the tracker is transferred from �active� to �inactive� (i.e., the transition a2), or else
to �tracked� (i.e., the transition a1).

• If a �tracked� tracker succeeds to track its target at the current frame, its state
remains as �tracked� state in the next frame (i.e., the transition a3), otherwise, it
transfers its state to �lost� (i.e., the transition a4).

• If a �lost� tracker recaptures its lost target, it transfers its state to �tracked� (i.e., the
transition a6), otherwise, it remains at its �lost� state (i.e., the transition a5). In the
case of a long time being in �lost� state (e.g. 30 frames, for example), the tracker
transfers its state to �inactive� and ends its tracking process (i.e., the transition a7).

• Any tracker whose state is �inactive� will no longer return to the tracking process.

In principle, the collaborative tracking process within our multi-camera network is
separated into two parts: independent tracking on each camera and associating data across
cameras. In terms of independent tracking from a single view (i.e., a single camera), the
MDPs of the trackers operate similarly to the MOTmethod of Xiang et al. [229]. Detections
are �rst classi�ed by an SVM to determine whether the new tracker is initialized and
transferred to the tracking process (i.e., true positive) or goes directly to �inactive� state
(i.e., false positive). When a tracker is in �tracked� state, it operates a SOT algorithm to
track its target. In the case of failure, the tracking process is replaced by a data association

111



4.1. GENERAL ONLINE MULTI-CAMERA MULTI-OBJECT TRACKING
FRAMEWORK

process, which matches the trackers with a detection belonging to it. This might go through
two �back up� steps: the single-camera matching ([229]) and the across camera matching
(our contribution). First, the camera itself tries to match the tracker with detections
nearby. If this matching succeeds, the second step is not necessary. Otherwise, the data
association result from all cameras is used to match the tracker with a detection. After
going through 2 matching steps, if the tracker succeeds to match with its detection, it
remains in its �tracked� state in the next frame, or else transfers its state to �lost�. When
the tracker is in �lost� state, it remains its state until the matching algorithm �nds a
matched detection found nearby. When the tracker stays in the �lost� state for a certain
amount of time without going back to the �tracked� state, it will be terminated by moving
to the �inactive� state. The detail of the deterministic transitions of tracker's state in each
camera is shown in the blue area of the �owchart, presenting our framework in Figure 4.2.

Concerning data association across cameras, after each camera independently performs
its own tracking task, the trajectories of targets are gathered at a computation center
in order to be associated with speci�c identities. As a result, the camera architecture
optimally supporting this collaborative method is the star model as in Figure 2.27 a),
except for the fact that instead of sending massive data of videos to the computation
center, in our framework, each camera is sending only the data of trajectories of targets to
the center. At the computation center, the trajectories from all views are associated with
each other, and then the association result is sent back to each camera. Subsequently, the
computational loads are separated on each individual camera (i.e., tracking tasks) and the
computation node (i.e., association tasks). In terms of target-ID storage for the association
at the computation center, we register the local ID of targets, which is the tracker number
from each view, into an assignment table. An example of this assignment table is presented
in the Tab. 4.1.

Identity View 1 View 2 View 3 View 4

A 1 2 2 1
B 2 1 3 4
C - 3 1 2
D 3 - - 3

Table 4.1 � The data assignment in the computation node within our collaborative multi-
camera framework. In this example, the identity A is being seen by all cameras with the
tracker IDs 1, 2, 2, 1 in views 1, 2, 3 and 4, respectively. Meanwhile, the identity C is only
being seen by views 2, 3 and 4 (out of the FOV of view 1).

The assignment table yields the identities of targets to its tracker numbers on each
view. As a consequence, the table also shows which identities are present, which are not in
each view. The assignment of trackers across all cameras is sent to each camera for further
processing, e.g., re-identifying lost targets or inferring targets' position during occlusion.
Diagram 4.2 shows our multi-camera tracking framework. Indeed, the operations inside of
the blue box are the loop of individually tracking tasks on single cameras at a single frame;
meanwhile, the operations outside of the blue box are processed in the computation center.
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Figure 4.2 � Diagram of our multi-camera collaborative tracking approach
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In the next section, we describe our data association method that matches the tracking
results from individual cameras together to obtain the assignment table.

4.1.2 Deployment of the across-view association data to improve robust-

ness

In this section, we explain the use of the multi-view assignment information to boost the
performance of the tracking process in single views. Therefore, the association of targets
from all views is useful in helping a single view trackers to handle occlusion issue. We
localize the identity of the target on the ground plane, and then we exploit it by sending
this information back to any camera which is failing to track due to occlusion. We separate
this multi-view solution into two scenarios: the �rst is the partial occlusion case, and the
second is the hard occlusion case. In the �rst case, the target is detectable but impossible to
be associated with any tracker. By comparing the detection of the target with the targets'
positions in other views, it is possible to re-link this detection to the correct target on the
view when the occlusion is happening. This is useful to keep cameras tracking their targets
in order to prevent them from losing their identities. In the second case of occlusion, the
targets have completely disappeared from the scene, the target's record on multiple view
allows to re-identify it once it reappears, and preserve its identity.

4.1.2.1 Partial occlusion cases

This section discusses partial occlusion cases that frequently occur in tracking videos
with complex environments. The partial occlusion case is de�ned as when a target is
detected, but cannot be identi�ed among current trackers under tracking process, because
part of the target is being hidden by other targets or by the environment. As a self-recovery
tracking process, the association step tries to associate the target to a nearby detection in
the case of SOT process failure. Indeed, matching characteristics between its templates
and its detection usually fails, because only a part of the target is being matched, while
the other part is being occluded. Hence the tracking process is interrupted, thus losing the
target, i.e., identity lost.

To keep taking advantage of detection results, we propose an additional step to recover
identity when a partly occluded target cannot be either tracked or associated with its detec-
tion. Concretely, from the views in which the target is being occluded, the representative
points of all detections are projected into the common ground plane. These representative
points are the middle points of the bounding box's bottom lines as the estimates of feet
positions. Therefore, all the targets belonging to the missing identity from all views give
their position on the ground plane to get an average position of the target. The detection,
which is closest to this position and not further than a �xed threshold, will be added to
the result of the tracker, which missed its target. These techniques allow MOT trackers to
perform with e�ciency in the case of the partial occlusion illustrated in Fig. 4.3.
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Figure 4.3 � The identity 3 is occluded in the displayed view because of the road sign. In
this case, the person with identity 3 is detectable, but recognizable in the actual view. By
using multiple cameras, our method is able to reassign the detection to the correct identity.

4.1.2.2 Long-time occlusion cases - Target re-Identi�cation

Besides the partial occlusion, the long-time occlusion is frequently present in tracking
videos. In this section, we explain our approach based on a multi-camera association to
recover the identity of targets. The association strategy in a single view (as in Fig. 4.2) can
handle short time occlusions when a target reappears at a position that does not exceed the
search area around its last position within a given time. This is a common strategy used by
many online trackers, as it can quickly recapture targets and resume tracking processes if
targets' movements are simple. In this case, expanding the search area or/and the searching
time period are possibly the solutions. They nonetheless do not su�ce to reclaim all lost
targets in any tracking scenario, in particular, when the time of disappearance varies and
depends on each target and when targets are moving at di�erent speeds with complex and
unpredictable trajectories, then it is infeasible to infer where targets are going to reappear
after occlusion.

To address this issue, we propose an approach using a network of cameras with over-
lapping �elds of view in order to allow trackers from each individual view to recapture
their lost targets by bene�ting from the across-view association data. Precisely, when a
target appears in the FOV of a camera, there can be three possibilities. Firstly, a target
reappears after being completely occluded in a long time. Secondly, a target reenters to the
scene where it has left before. Finally, a completely new target appears. In the last case,
initializing a new tracker to pursue the new individual is appropriate. However, in the two
�rst cases (i.e., occlusion consequences), re-identifying the target is reasonably expected
rather than creating a new tracker. In our implementation, whenever a tracker is just born
and successfully runs in several frames, which is con�rmed not to be the false positive,
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it is considered as a newborn target. As illustrated previously (Fig. 4.2), for each �lost�
target, its estimate from other views (via association results) is compared with all new
targets. In detail, for each �lost� target, we collect the positions of the target from other
views, called the position estimate of the �lost� target. Among all new born targets, we
then seek a new born target, which is closest to the �lost� target's position estimate. This
new born target is considered as belonging to the �lost� target, if and only if the average
Euclidean distance between this new born target and the position estimate of the �lost�
target is smaller than a pre-de�ned threshold. With this technique, our framework uses
the position of �lost� targets across cameras within the network to re-identify it in the view
which has been losing the target. The details of the ID-recovery algorithm are presented
at Alg. 4. The entire algorithm of our multi-view multi-object tracking is shown in Alg. 3.
In the next section, we detail the distance functions which are used to measure the a�nity
between two targets.

Input : Set of video sequences from K views. Object detection Dk = {dkm}
Q
m=1

for camera k.
Output: Trajectories of targets T k = {vki }Mi=1 in the kth camera, for all

1 ≤ k ≤ K.

1 Initialization: T k ← ∅, 1 ≤ k ≤ K.
2 // main loop

3 foreach frame number l in videos do
4 foreach each view j do
5 // process targets in tracked states

6 foreach tracked target vki in T k do
7 Follow the policy, move the MDP of vkj to the next state;
8 end

9 // process targets in lost states

10 foreach tracked target vki in T k do
11 Recover tracked state if found any similar detection covering the target;
12 Add the nearest detection into target if found in one of the subgraphs;
13 end

14 Data association for the lost targets;
15 foreach lost target vi in T k do
16 Follow the assignment, move the MDP of vki to the next state;
17 end

18 Initialize the new targets from detection dkm not covered by any tracked
target in T k;

19 end

20 Update the set of subgraphs with the Algorithm 5 in Sec. 4.2 or Unbalanced
Optimal Transport matching in Sec. 4.3;

21 Connect the newborn tracklets vki′ to the lost target vki with the Algorithm 4;
22 end

Algorithm 3: MDP-based multiple-camera MOT algorithm.
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Input : Set of �lost� target from K views Tlost = {vki }Mi=1, Set of new targets
Tnew = {ukj }Nj=1. Set of subgraphs {Gs}

Output: A new set of �tracked� target Ttracked = {vki }i=1, the �lost� target set
Tlost = {uki }

m≤M
i=1 and the new target set Tnew = {uki }

n≤N
i=1

1 // process targets in tracked states

2 foreach lost target vki in Tlost do
3 foreach new target uki in Tnew do

4 Get the list of associated targets of vki : Gs.

5 Measure the distances between ukj and {v
k′ 6=k
i } ∈ Gs \ {vki }:

{d} ←
{
fdist

(
ukj , v

k′
i

)}
6 if Average distance d̄ < γ1 then

7 Merge vki ←
{
vki , u

k
j

}
8 Discard ukj .
9 end

10 end

11 end

Algorithm 4: Algorithm of recovery identity of �lost� target.

4.2 Data association across cameras

This section describes our target association approach, which bene�ts from the Markov
Processes of SOT trackers in the MOT framework [229]. Consequently, all tracked and lost
trackers in each camera are assigned to those in other cameras. Each individual/target on
the tracking scene is being tracked by a tracker on each camera. Based on its appearance
and position, the trackers tracking the same target across cameras are associated together.
On the other hand, the state of targets, e.g., tracked or occluded, is interpreted via associ-
ated trackers across cameras, this allows our multi-camera tracking framework to leverage
these assignments to correct and recover the identity of targets after occlusion in each
camera, hence to obtain more accurate tracking results in terms of ID-preservation.

4.2.1 Proposed methods

As an essential part of our multi-camera framework described in the last section, we
present in this section, our approach of data association across cameras, which connects
trackers found in all cameras to identify target individuals. Indeed, the input to our
algorithm is a set of videos obtained by multiple calibrated and frame-synchronized cameras,
whose FOVs signi�cantly overlap. As mentioned in the previous section, the MDP of [229]
for multiple object tracking in a single view is embedded in our multi-camera framework.
Initially, after each camera obtained its own tracking independently, all the trackers from
cameras are the input of our data association algorithm. Because any target found during
tracking videos is presented by a tracker, for convenience, the term �target� indicates for
�tracker� from now on. Basically, we only consider, at each time t, the set of �alive� targets,
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that is, the set of targets whose state is �tracked� or �lost�, as inferred by the policy learned
in [229]. Our goal is then to associate these targets across the di�erent cameras. We
formulate this goal as an optimization problem involving an undirected weighted graph.
To keep the notation uncluttered, we drop, in the sequel, the dependency on the time t.
It is however important to keep in mind that the data association algorithm we describe
is applied sequentially through time.

We use the notation G = (V,E,w), where V , E and w respectively denote the set
of nodes, set of edges and the weights of the edges. In our formulation, the �alive� tar-
gets of all cameras are considered as the set V of nodes. Let Ck = {vk1 , ..., vkM} be the
cluster of targets in the camera k. The cluster Ck includes, in particular, all detections
which are not considered as being false positives. The edges of the graph are de�ned
as E = {(vkm, vln)|m,n ≥ 1 and k 6= l}, with the condition k 6= l indicating that two
nodes in same camera cannot be connected. A node vkm has a trajectory feature-vector
xkm = {xk,1m ..., xk,Fm }, where xk,im corresponds to the 2-dimensional coordinates, on the 3-D
world ground plane z = 0, in the previous i frame. The number F corresponds to the
number of past frames retained. The coordinates on the plane xy (i.e., the common coor-
dinate system) are obtained by projecting the tracking result from image plane by using
the homography matrix obtained from calibration data.

A node vkm also has a bounding box Φk
m that will serve to compute appearance feature-

vector, to be detailed later. The weight of an edge between two nodes is then de�ned by
the sum of an appearance distance fapp and a trajectory distance ftraj as the following
equation:

w(vkm, v
l
n) = α fapp(Φ

k
m,Φ

l
n) + βftraj(x

k
m,x

l
n), (4.1)

where α and β are two coe�cients to balance the contribution of two distance metrics,
which is explained in the Sec. 4.2.3.

The computation of the distance function ftraj involves the trajectories between two
targets in the last L frames:

ftraj(x
k
m,x

l
n) = g

(
xk,F−L+1:F
m , xl,F−L+1:F

n

)
, (4.2)

where L = min
(
min

(
|xk|, |xln|

)
, 20
)
and g is a function, to be detailed later, that quanti�es

the average distortion between trajectories.

As mentioned in [236], the process of matching a target in di�erent views requires
identifying correspondences of the target in all di�erent views. Hence, the solution of the
problem can be described as a connected subgraph of G in which each node (target) is
selected from only one cluster (view). Therefore, the subgraph for a particular tracked
person can be denoted by Gs = (Vs, Es, ws). The set of nodes Vs has a general form
Vs = {vkm|k ∈ {1, ...,K}}, Es = {E(p, q)|p, q ∈ Vs} and ws = {w(p, q)|p, q ∈ Vs}. Fig. 4.4
shows some examples of connected subgraphs representing some targets through the views.
By de�nition, since there is no edge within the same cluster C, we obtain a subgraph in
the �gure (its edges include all dashed and solid lines). Additionally, we impose a maximal
distance constraint on the edges to ensure that targets on all views must get close enough to
con�rm the identity of an unique person. Precisely, given a particular target in a particular
view, we eliminate all targets whose distance to the chosen one is greater than a ε value.
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Figure 4.4 � Finding the corresponding targets in di�erent views. For visualization pur-
poses, we draw only edges between 2 successive views. We however stress that edges connect
targets between all the views. Edges in solid line connect a target corresponding to the
same identity, in di�erent views. In this example, there are three connected subgraphs
indicating three people in the tracking process [132]. An example of the subgraph of a
target can be seen as the Fig. 4.5.

Associating targets across cameras now amounts to �nding a connected subgraph having
a maximum number of targets gathered from all views, and having the following minimum
cost:

min
Gs⊂G

F (Gs) =
∑

m,n,k,l

w(vkm, v
l
n) s.t. k 6= l, (4.3)

where
Gs = {Vs, Es, ws|∀(vp, vq) ∈ Es, w(vp, vq) ≤ ε ∈ R+} . (4.4)

Since the problem is related to �nding cliques in a given graph, the authors of [236]
use the Generalized Minimum Clique Graph (GMCP) algorithm for matching detections
through time. In our study, we do not consider the data association through time, but
across cameras, at each time. We thus �nd a subgraph corresponding to each identity in
every frame. In particular, we do not need to enforce temporal constraints, as was proposed
in [236].

Since �nding an optimal solution for our problem is related to �nding a solution for
the Travelling Salesman Problem (TSP) [236], we devise a simple, fast heuristic technique
targeting an approximate solution well suited for the tracking application we consider.
Instead of comparing all pairs of nodes, we select a node v0 in G and include in the subgraph
Gs all other nodes that are adjacent to v0 and whose weight is less than a �xed threshold.
In Alg. 5, we �x a camera k0 in which all targets are selected as the reference nodes v0
to perform the data association step. The comparison between our approximate solution
and the optimal one is illustrated in Fig. 4.5. The details of the proposed algorithm are
described in Algorithm 5.
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Figure 4.5 � Comparison between the optimal solution (a) and our fast heuristic (b). Note
that node v61 is included in the optimal solution, but not in the approximate one, because
v61 is not adjacent to the �xed node v52 [132].

Input : K overlapping and frame-synchronized cameras.
Set of tracked or lost targets T k = {vki }Mi=1 in all views
A chosen �xed view k0.

Output: C = set of subgraphs Gs, 1 ≤ s ≤ N , N ≤M , each indicating a given
identity across views.

1 Initialize all subgraphs of C to the empty set.

2 foreach vk0i in view k0 do
3 foreach each view j 6= k0 do
4 Register ← ∅;
5 foreach vji′ in view j and vji′ /∈ Gj do
6 Compute the weight of the edge connecting targets vk0i and vji′ (by eq.

4.1);
7 Save the edge (vk0i , v

j
i′) and its weight to the Register variable;

8 end

9 Optimal cost ← min(register);
10 switch setting do
11 case setting1 do

12 condition = Optimal cost < ε1;
13 end

14 case setting2 do

15 condition = Optimal cost < ε1 & ftraj(v
k0
i ,vji′) < 3.5µ1

16 end

17 end

18 if condition then

19 Add vji′ to subgraph Gi.
20 end

21 end

22 end

Algorithm 5: Algorithm for data association across cameras.
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The next section describes the distance functions used in our framework to measure the
a�nity between targets in di�erent cameras in order to associate targets across cameras,
which address the occlusion problem in single-view and promote the ability to re-identify
targets in the camera networks.

4.2.2 Distance functions

In this section, we discuss the features and the distance functions used in our algorithm
in order to associate targets across cameras. As we mentioned previously, the appearance
of targets is an important cue to determine whether two targets in two di�erent views are
identical or not. Generally, the algorithm accesses the appearance cues of a target through
an image cropped from its bounding box. This image patch usually contains both the
target and the background, and its appearance can di�er from one camera to another, e.g.,
di�erent color patterns, background, or changing shape from di�erent points of view. In
order to increase robustness, the a�nity measure also includes a measure of the trajectory
of targets which is the distance between targets' trajectories. This a�nity measure is
consistent and invariant in di�erent views, since each target moves on a unique path in a
speci�c period of time during the videos. We now present a variety of features and distances
used in our algorithm and dedicate a subsection to the delicate issue of combining distances
based on di�erent features.

4.2.2.1 Trajectory-based features

This section discusses the trajectory-based features used to compute the a�nity be-
tween any pair of targets of di�erent cameras. We introduce a distance metric, which
is generally a temporal signal comparison to measure the disparity or similarity between
two-time series, which are the paths of targets in di�erent views in our case. As men-
tioned previously, in a calibrated, synchronized, and overlapping camera network, to share
the tracking results across cameras, all the trajectories of targets from all views must be
converted and projected on a common plane. Therefore, the trajectories of targets we con-
sidered are the series of coordinates of targets, which are recorded during their movement,
on the common ground-plane. In the literature, there are two common distance metrics
to compare two temporal signals, which are di�erent from each other by their data point
matching methods: the pointwise Euclidean matching and Dynamic Time Warping (DTW)
matching methods [185]. Firstly, the most basic and simplest method is the pointwise Eu-
clidean matching, which is the matching each single data point of a signal to that of the
other signal provided that those data points recorded at the same time. The second tech-
nique of matching, DTW, was introduced by Sakoe et al. [185] to cope with the di�erence
of 2 similar signals recorded at di�erent speeds. DTW is an e�ective matching tool that is
used in many di�erent applications, such as comparing stock trading data over similar time
frames in �nancial markets or comparing audio clips for speech recognition. In general, it
is a method that calculates an optimal non-linear match between two given data sequences
with the objective to obtain the minimal cost, which is computed as the sum of absolute
di�erences between matching points. The di�erence between these two matching methods
is illustrated in Fig. 4.6.
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Figure 4.6 � Comparison between the pointwise matching and Dynamic Time Warping
matching. Source: Wikipedia

• Pointwise distance. We consider trajectories involving L points, the point-wise
distance between the trajectories of two targets is de�ned as the average value of the
Euclidean distance between two positions of the targets at frame t. The formulation
of the point-wise distance is written as follows:

ftraj(x
k
m,x

l
n) =

1

L

L−1∑
i=0

∥∥∥xk,F−im − xl,F−in

∥∥∥ , (4.5)

where xkm = {xk,1m ..., xk,Fm }.

• Dynamic Time Warping distance. One of the issues in multiple-camera tracking
systems is the imperfection of frame synchronization. It implies that the movement of
targets might be recorded at slightly di�erent time frames through di�erent cameras.
In reality, synchronizing frames across cameras means matching the frames recorded
in a camera to those of other cameras in the system, such that the di�erences of
recorded time between any pair of frames do not exceed a certain value, e.g., 10 ms,
for example. There is always some tiny frame asynchronization in synchronized multi-
camera systems. As a result, the path of a target might be dissimilar in di�erent
camera views. The Dynamic Time Warping algorithm allows the tracking process to
alleviate this issue. We de�ne DTW distance between 2 trajectories with length L
as the following formula:

ftraj(x
k
m,x

l
n) =

1

L
dDTW (xk,F−L+1:F

m ,xl,F−L+1:F
n ). (4.6)

Notice that DTW function dDTW gives the sum of absolute di�erences of matching
points, so to make this metric comparable to pointwise distance, we divide this value
by the considered length L of the two input signals.

In the next section, we explain another type of features technically based on appearance
of targets beside the trajectory-based features discussed above.
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4.2.2.2 Appearance features

According to the literature on appearance features (in Sec. 2.5.4), which is commonly
used in re-identi�cation applications, there are two main classes of appearance features:
handcrafted and learning-based features. In this section, we detail the appearance features
that we used in our multi-camera tracking algorithm. In terms of handcrafted features,
the histogram of colors is �rst the most popular feature in computer vision to characterize
visual objects. Secondly, the backward-forward metric based on Lucas-Kanade matching
points is used in LK tracker [27]. The �nal handcrafted feature we use is deep matching
pairwise feature [221]. Alternatively, to extract the most relevant characteristics of targets,
we apply two CNN-based learning appearance features as well.

• Histogram of colors: Color is an informative cue that allows us to distinguish
between di�erent targets. One of the most common features based on color is Color
Histogram (CH), which is basically a multi-histogram of color pixel intensity of im-
ages, which can be a single channel (i.e., gray image) or multi-channel (e.g., RGB,
HSV, CMYK). Besides the simplicity of computation of CH, several adverse e�ects
of using CH, such as the target color change from camera to camera due to di�erent
image sensors of cameras, or the remaining portion of background in the cropped
image leads to the confusion of targets and deteriorates tracking performance. In
our implementation, after evaluating the histogram of all three RGB channels of the
image extracted from the target's bounding box, we simply concatenate them into
one feature vector. The distance metric is de�ned as the Euclidean distance between
the CH vectors of two targets. The formulation is written as follows:

fapp(Φ
k
m,Φ

l
n) = fEuclidean(Φk

m,Φ
l
n) =

∥∥∥fCH(Φk
m)− fCH(Φl

n)
∥∥∥
2
. (4.7)

• Lucas-Kanade Backward Forward error: We adopt the appearance feature for
object tracking presented in the paper of Xiang et al. [229], which is the combina-
tion of the optical �ow matching and the Forward-Backward error. In general, the
algorithm performs the matching between the densely sampled points of optical �ow
calculated from the target's current appearance and the considered detection in the
next frame. From the corresponding point, the algorithm then performs another
optical �ow matching backward from points on the next frame to the those on the
current frame. Concretely, on the current frame image It, an optical �ow is com-
puted from densely and uniformly sampled points inside the template to the next
frame image It+1. Given a set of points {ui} = {(ux, uy)i} sampled inside the target
template. Then the iterative Lucas-Kanade method with pyramids [27] operates on
those points to seek their corresponding {vi} = {ui + di} = {(ux + dx, uy + dy)i}
on the next frame image It+1, where the set of vectors {di} are the optical �ow of
the target template (Fig. 4.7 (b)). As a result, the optical �ow matching allows the
tracker to predict the target's position in the next frame t + 1. Notwithstanding,
the matching is not always consistent with tracking, as illustrated in Fig. 4.7 (c).
In order to decide whether accept or reject the prediction, the Backward-Forward
(BF) error by Kalal et al. [116] measures the stability of the prediction. Indeed, let
a forward optical �ow be a set of points {ui} on the current frame t and its corre-
spondences {vi} on the next frame t+ 1, and a backward optical �ow be the points
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{vi} on the next frame t + 1 and their correspondences {u′i} on the current frame
t. In case of reliable predictions, on the current frame image It, any pair of ui and
u′i should be close to each other. Hence, the FB error at any point ui is measured
by the Euclidean distance between its location and that of its Backward-Forward
prediction: e(ui) = ‖ui − u′i‖

2. Finally, as an appearance distance [116], the stabil-
ity of matching is measured by the median of the FB errors of all sampled points:
emedFB = median({ui}).

Frame 50 Frame 51 Frame 57Frame 50 Frame 51 Frame 57Frame 50

(a) target template (b) stable matching (c) unstable matching

Figure 4.7 � The appearance of the target is represented by a template in a video frame
(a). In �gure (b), a set of sampled points {ui} inside the target in frame 50 matches to
a set of points {vi} in the frame 51. The optical �ow is computed from densely sampled
points inside the target template to a new frame. The quality of the �ow is used as a
cue to make the decision: (b) an example of stable prediction, meanwhile the divergence
of matching point caused by the unstable prediction (c). The yellow box is the predicted
location of the target. [229]

Similarly, we de�ne an appearance distance based on the median Backward-Forward
error between two target appearances Φk

m and Φl
n in di�erent views:

fapp(Φ
k
m,Φ

l
n) = emedBF (Φk

m,Φ
l
n), (4.8)

where emedBF is the median of Backward-Forward errors, as prede�ned above.

• Deep matching: Similarly to LK matching approach mentioned above, Weinza-
epfel et al. [221] developed an e�cient way to densely match points from one image
to another, which named deep �ow or Deep Matching. The Deep Matching algorithm
computes the dense optical �ow on the entire image. This method densely �nds the
matching points from an image to another. Thus the approach is devoted to the quan-
tity of the matching points rather than their quality. From the perspective of tracking
problems, it becomes more appealing when it is used to match detections that belong
to the same person, the matching points on the body is more easily found than those
on the background, as the scene behind changes permanently while the target moves.
Some examples of Deep Matching results are shown in Fig. 4.8. Inspired by Deep
Matching method [221], Tang et al. [201] introduced the Deep Matching pairwise
feature, which basically measures the appearance similarity between 2 targets based
on the number of matching points between two detections.

In our implementation, when the Deep Matching algorithm [177] is deployed on two
distinct views, we observe that the number of matching points decreasing dramat-
ically, so the pairwise feature used in [201] becomes inaccurate. In order to tackle
this issue, we propose a variant of Deep Matching inspired by the Lucas-Kanade
backward-forward distance mentioned above. Instead of considering the median
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Figure 4.8 � Visualization of the Deep Matching results on the MOT16 sequences [201].
The keypoints (i.e., cross masker) having the same color are the pairs of deep matching
between two images.

Backward-Forward error as the distance metric, we measure the average displace-
ment of the matching points. Given the optical �ow between two detections with K
matching points, the matching points of the target's appearance ui ∈ R2, 1 ≤ i ≤ K
are matched to those u′i ∈ R2, 1 ≤ i ≤ K on other detections in other views. Ideally,
the matching between two distinct individuals will amplify the displacement on av-
erage, while the correct matching of the same identity on multiple views will result
in a small displacement. Therefore, our Deep Matching distance function is de�ned
as follows:

fapp(Φ
k
m,Φ

l
n) = eDM (Φk

m,Φ
l
n) =

1

N

N∑
i=1

||ui − u′i||2, (4.9)

• CNN-based learning appearance features: As discussed in Section 2.5.4, the
learning-based features show an impressive performance on representing images.
Hence, we apply deep learning techniques to extract appearance features for the
a�nity measure between targets in our multi-camera framework. The current trend,
fueled by the recent success in deep learning, considers the features corresponding
to the output produced by the hidden layers of a deep neural network. As one of
the �rst attempts to apply deep learning to extract appearance features for the re-
identi�cation task, Hermans et al. [105] introduced a novel CNN to extract useful
appearance features, while eliminating extraneous factors such as background and
moving body parts. In detail, the authors use the pretrained ResNet-50, replace the
last FC layers by their own FC layers for their Re-ID task. The output of the CNN
with the replaced FC layers embeds the input bounding box into an embedding space
with the dimension of 128, where Euclidean distance allows disambiguating di�erent
identities.

In the embedding space of appearance feature vectors, we can straightforwardly com-
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CNN layersInput images FC layers

output (4 × 8 × 2048)Input data (128 × 256 × 3)

pooling (1 × 1 × 2048)

output (1 × 1 × 1024)

output (1 × 1 × 128)
TriNet output:

Coordinates on the

embedding space R128

ResNet' output:

Coordinates on the

embedding space R2048

Figure 4.9 � CNN-based appearance feature extraction with our modi�ed ResNet50
(ResNet') and TriNet.

pute the Euclidean distance between targets. Letting F : Φk
m ∈ S → fnet(Φ

k
m) ∈ Rn

denote the learned embedding provided by the CNN, we can de�ne an appearance
distance as follows:

fapp(Φ
k
m,Φ

l
n) =

∥∥∥fnet(Φk
m)− fnet(Φl

n)
∥∥∥
2
. (4.10)

In this study, we test the pretrained CNN [105], named triNet, and another CNN
feature extractor, the resNet50 [99] without the last FC (fully connected) layers,
named ResNet'. The architecture of CNNs we use to extract appearance features
from target images is shown in Fig. 4.9.

4.2.3 Combining appearance and trajectory distances

In this section, we explain how the �nal distance metric is combined from the two types
of distance metrics: appearance feature distance and trajectory-based distance. With the
purpose of proposing a robust distance to be able to distinguish di�erent individuals, we
introduce an overall distance metric, which is a combination of appearance and trajectory
distances, as written in the Eq. (4.1).

A crucial problem emerges when we observe the tracking results of any target across
views of an overlapping and synchronized camera network. At any frame, a target always
has di�erent positions on the ground because those positions are from the projection of its
on-view positions from di�erent cameras on the ground plane. This disparity of positions
between di�erent cameras is caused by the calibration error or the asynchronization of
frames of multiple cameras. Similarly, we assume that the cause of the disparity of appear-
ance features of the same target across cameras is a type of camera network errors, e.g.
color calibration error. we then characterize these types of disparities as the characteristic
parameters of the camera network. To support this assumption, we conduct exhaustive ex-
periments on two datasets including PETS09-S2L1 and terrace1. Fig. 4.10 a) and c) show,
for two di�erent datasets, the (empirical) standard deviation of the `2 errors between the
positions of the computed projections, seen from di�erent cameras, and the ground truth.
The �gures show the evolution of these uncertainties through time (frames) and for each
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Figure 4.10 � The trajectory uncertainties in PETS09-S2L1 sequence (a) and terrace1 se-
quence (b). Figures (c) and (d) depict the uncertainties related to color histogram features.
Each color corresponds to a particular identity.

particular identity. Fig. 4.10 b) and d) illustrate the same uncertainties, but this time,
based on the `2 errors between the appearance features. The particular feature vector used
in Fig. 4.10 b) and d) is the color histogram. These experiences show that di�erent distance
types (e.g. trajectory v.s. color histogram) require di�erent thresholding values. Based on
this �nding, we propose to relate the values of α and β to these location and appearance
uncertainties, respectively. More precisely, we consider the following distance:

w(vkm, v
l
n) =

1

2

(
1

µ1
fapp(Φ

k
m,Φ

l
n) +

1

µ2
ftraj(x

k
m,x

l
n)

)
, (4.11)

where µ1 and µ2 are the average, through all the identities present, of location and appear-
ance uncertainties, as afore-de�ned.

The next section details the implementation of our multi-camera tracking approach and
the experimental results to prove the robustness of our multi-camera framework.
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4.2.4 Performance evaluation

In this section, we present a common benchmark to evaluate the performance of our
Multi-camera Multi-Object tracking algorithm and our analysis of the experiments we con-
ducted. Firstly, we use the two most important benchmarks consisting of MOT-CLEAR
and ID measure, which are widely recognized by the Multi-Object Tracking community.
Secondly, in the implementation, we specify two di�erent settings of our algorithm, de-
tection task, as well as the existing methods for comparison. Finally, to validate our
multi-camera approach, we analyze the experimental results of our approach compared
with those of other approaches. These analyses are based on many aspects, including the
impacts of trajectory-based and appearance features on performance and the quantitative
comparison between our method with di�erent settings and other methods.

4.2.4.1 Implementation

We keep the same parameters of the original proposition of MDP [229], the others
parameters in our approach are detailed below. For target association algorithm, we chose
the view 1 as the dominant view k0.

Setting. For experiments, we test our algorithm with two grouping conditions:

• Setting 1: w(vkm, v
l
n) < ε1

• Setting 2: w(vkm, v
l
n) < ε1 and ftraj < ε2,

where ε1 = 4.2 and ε2 = 3.5µ1, where µ1 is the position uncertainty level, as de�ned in the
section 4.2.3. In other words, we test our algorithm without and with a spatial distance
constraint to analyze the contribution of appearance features in the tracking results.

Detection. In all Tracking-by-Detection approaches, the detector plays an important
role in tracking performance. We employ the widely used, public ACF (Aggregate Channel
Features) detector [69] on all views of the sequences �PETS09-S2L1� and �Terrace1�, using
the pre-trained Caltech model [223].

Competing methods. To evaluate our approach, we compare our method with the
original MDP single-camera method and the multi-camera K-Shortest path (KSP) from
the state-of-the-art. The KSP algorithm outputs quantized positions in the probabilistic
occupancy map (POM) [81]. Our implementation uses a grid of size 36 × 36. We also
test our algorithm with all di�erent trajectory distances and appearance features detailed
previously:

• Pointwise and Dynamic Time Warping (DTW)

• Color histogram, median Backward-Forward LK error (LK), DeepMatching (DM)
and learned appearance features using triNet and resNet50.

4.2.4.2 Tracking benchmark

Comparing the performance of di�erent MOT trackers is a delicate issue. The choice
of the metric generally depends on the user's end objective. For security applications, the
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identity of the target is one of the most important criteria, while for monitoring crowds
and tra�c, the number of mismatches between the ground-truth and the predicted result
is more appropriate. In our study, we evaluate our method by using the CLEAR MOT [22]
and ID measure [178]. It is important to note that there is a huge di�erence between these
two metrics. The CLEAR MOT metric evaluates a tracker based on how often mismatches,
in covering target region image, happen, while the ID metric measures how long the tracker
keeps the identity of targets. The latter measure relies on an o�set boundary value ∆ from
the ground-truth. It counts how many times the tracker gives the prediction within the
boundary.

In this section, we present our experimental results verifying the e�ciency of our
multiple-camera MOT algorithm. To evaluate MOT performance, the benchmark MotChal-
lenge [133] has been released with 2 datasets (MOT15 and MOT16), which contain a
number of single-camera video sequences recorded by static or dynamic cameras, and the
evaluation metrics of CLEAR MOT [22] and ID measure [178] are used. Additionally, the
MotChallenge also provides multi-camera video sequences, but with cameras with mostly
non-overlapping �elds of view. Unfortunately, these datasets do not �t to the setting we
consider in this study. We thus test on di�erent datasets, to be explained later, but we
still evaluate the performance of the method by relying on the CLEAR MOT and ID fam-
ily of metrics, since they are still appropriate for our current setting. Since our method
was especially designed to improve identity robustness, we will emphasize ID scores in the
sequel.

Datasets. We used the well-known PETS2009 [78] and EPFL Multi-camera Pedestrian
Videos [20] datasets. Among all sequences of PETS2009, the most relevant and suitable for
our multiple-camera tracking system is �PETS09-S2L1� with 7 views from 7 synchronized
and calibrated cameras. For our experiment, we only used 1 main view (from the camera
1) and 4 close-up views (from the cameras 5, 6, 7, and 8). Meanwhile, the EPFL dataset
provides multiple indoor and outdoor video sequences, recording pedestrians by 4 di�erent
cameras. Because of the similarity between sequence scenarios, we selected the sequence
�Terrace1� for our experiments. Fig. 4.11 shows that about 15−20% of the observable zones
are covered by all cameras. The PETS2009 dataset initially does not provide the ground
truth. Fortunately, MotChallenge1 provided the ground truth and detections on view 1.
To complete the multi-view dataset ground truth, we manually annotate all identities on
the other views. The ground truth of the sequence �Terrace1� is already published. The
detections of the other views of PETS2009 and those of �Terrace1� are obtained by the
same public detector used on MotChallenge, which is detailed in the Section 4.2.4.1. The
ground truth and detection data on all views will be published on our project page2.

Evaluation metric. To validate the e�ciency of our multiple-camera multiple-object
tracking method, we adopt the CLEAR MOT metric and ID measures and in particular
the following scores: MOTA (multiple-object tracking accuracy), MOTP (multiple-object
tracking precision), IDs (identity switches), IDF1 (ID F1-score), IDP (ID precision), IDR
(ID Recall), False Positive (FP) and False Negative (FN). For further details on the metric,
we recommend the MOTChallenge website3.

1https://motchallenge.net
2https://github.com/quoccuongLE/MDP_MTMC_Tracking
3https://motchallenge.net
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Figure 4.11 � Fields of view of the cameras in the PETS09-S2L1 sequence (a) and terrace1
sequence (b). The common overlapping zone has red contours. The rectangle unit has a
dimension of 5× 5 meters in the real world [132].

4.2.4.3 Experimental results

Overview. The results shown in the following tables and bar charts are the average
values from all views. Concretely, the overall tracking results of the PETS sequence can be
seen in the Table 4.2 and Table 4.3. Each score column has either an ↑ or a ↓ indicating
whether better corresponds to higher or lower, respectively. In the bar charts, we only
display the two most important scores, IDF1 and MOTA, with a horizontal blue line
representing the reference IDF1 score of the original single-camera MDP method.

Primarily, our proposed method focuses on tracking targets in the hard occlusion case.
It leads to an important reduction of identity switches and a signi�cant improvement of
ID measures. In detail, with only 15 − 20% overlapping zone, on average in the best
setting, our approach on the considered PETS sequence increased about 14.9% for IDF1,
14.3% for IDP and reduced 36.7% of ID switches. In terms of CLEAR MOT scores, our
approach slightly improves both MOTA and MOTP scores. This can be explained by the
fact that tracker's identi�cation ability is not captured by the CLEAR MOT metric [178].
On the EPFL sequence, we observe the same e�ect. More precisely, our method remarkably
improved the ID measure scores in the Table 4.4 and Table 4.5. The score increases by
27.7% for IDF1 and 27.2% for IDP. In contrast, the MOT scores and ID switch number
slightly decreased, but these changes are not notable.

The KSP method performs poorly on the sequence PETS09-S2L1, but gives a high
score on EPFL/terrace1. This behavior can be explained by the fact that the KSP method
was developed on the EPFL multiple- camera Pedestrian Dataset. In fact, the authors
assume that the targets have to �nish their complete trajectories before leaving the scene.
The in/out position of targets is also �xed on the scene, so we can see the actors walking in
and out at the same place. On EPFL/terrace1, the algorithm found 8 paths that exactly
correspond to the 8 targets in the video, thus leading to a high IDF1 score. Back to
the sequence PETS09, the algorithm cannot deal with the targets that usually went out
and then returned into the scene. It just found the longest paths and completely ignored
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the targets which appeared in a short period of time and regularly get confused by other
targets at the boundary. Moreover, in the PETS09 database, there are no constraints
on where people will appear and disappear on the scene. Consequently, KSP receives a
negative score on MOTA. It indicates that the KSP algorithm cannot handle the enter/exit
of targets. Another problem with KSP is that the tracking process occurs on a grid, called
Probabilistic Occupancy Map (POM), whose unit size directly a�ects the accuracy of the
tracker. Unfortunately, increasing the resolution of the POM required more iterations to
make sure the occupancy map converged correctly.

Method IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
MDP 57.49 62.24 333 68.44 68.83
MDPmv + triNet 62.34 67.11 270 69.14 68.94
MDPmv + resNet50 62.35 67.15 250 69.54 68.84
MDPmv + LK 63.76 68.80 252 69.50 68.84
MDPmv + DM 58.97 63.75 260 68.88 68.94
MDPmv + CH 64.14 69.11 251 69.15 68.99
KSP 21.51 18.16 812 -29.63 64.27

Table 4.2 � Setting 1: Overall scores of MOT metric on �PETS09-S2L1� sequence.

Method IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
MDP 57.49 62.24 333 68.44 68.83
MDPmv + triNet 65.76 70.91 213 70.54 69.04
MDPmv + resNet50 65.93 71.09 212 69.94 68.91
MDPmv + LK 64.84 69.77 230 70.24 68.90
MDPmv + DM 66.00 71.00 207 70.67 68.99
MDPmv + CH 67.69 72.85 192 70.70 68.96
KSP 25.85 23.51 695 19.57 62.26

Table 4.3 � Setting 2: Overall scores of MOT metric on �PETS09-S2L1� sequence.

Method IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
MDP 12.29 16.36 656 47.14 72.65
MDPmv + triNet 15.46 20.60 736 46.57 72.42
MDPmv + resNet50 17.87 23.92 741 47.64 72.62
MDPmv + LK 15.76 20.87 768 46.49 72.53
MDPmv + DM 13.62 18.37 730 46.78 72.48
MDPmv + CH 16.00 21.12 761 46.85 72.44
KSP 25.85 23.51 695 19.57 62.26

Table 4.4 � Setting 1:Overall scores of MOT metric on �terrace1� sequence.

Analysis of di�erent features. We test our approach with di�erent appearance
features. According to the IDF1 score, and excluding the KSP method, the results show
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Method IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
MDP 12.29 16.36 656 47.14 72.65
MDPmv + triNet 14.41 19.08 710 46.57 72.42
MDPmv + resNet50 14.62 19.35 692 47.64 72.62
MDPmv + LK 14.93 19.85 681 46.49 72.53
MDPmv + DM 17.89 23.82 689 46.78 72.48
MDPmv + CH 16.60 21.98 699 46.85 72.44
KSP 25.85 23.51 695 19.57 62.26

Table 4.5 � Setting 2: Overall scores of MOT metric on �terrace1� sequence.

that there is no dominant appearance feature showing the best scores for all the tests.
We remark that the LK feature and the two learned appearance features using triNet
and resNet50 display a stable performance in the entire experiment. In contrast, the hand-
crafted DeepMatching feature has inconsistent results with the two settings. Indeed, on the
one hand, it performs poorly in Setting 1, but on the other hand, it reaches the performance
level of the other features in Setting 2. Surprisingly, the color histogram appears to be
a simple, stable, and good appearance feature, reaching high scores in all settings. The
impact on the CLEAR MOT metric of the overall multi-camera algorithm, including all
the features variants considered, is not signi�cant. This was somehow expected as the main
motivation behind the proposed method is to increase identity robustness. The rest of this
section will thus concentrate on ID scores.

Comparison of di�erent trajectory distances. We tested the two trajectory dis-
tance functions in Settings 1 and 2. The IDF1 mean value, concerning all appearance
features, is shown in Table 4.6. The reported values indicate that Setting 2 notably helps
the multiple-camera approach increase its performance, as opposed to Setting 1. We also
realize that within the setting 2, our algorithm displays the same score with di�erent ap-
pearance features. That means the additional spatial constraint, imposed in Setting 2,
produces a stabilization with respect to other features.

Table 4.6 also summarizes the average scores, for all views, obtained when using the
pointwise and DTW trajectory distances. The overall results indicate, in this case, that
the improvement provided by DTW is not signi�cant.

Sequence Path error Setting IDF1

PETS09-S2L1 pointwise 1 62.31
2 66.05

DTW 1 62.77
2 65.89

EPFL/terrace1 pointwise 1 15.74
2 15.69

DTW 1 15.69
2 16.27

Table 4.6 � Comparison of Settings 1 and 2, and pointwise and DTW distances.
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Qualitative comparison. Fig. A.6 provides a visual comparison of tracking results
between our multi-camera approach and the MDP single-camera approach, on the sequence
PETS09-S2L1. Overall, we can see that the multi-view system has the ability to recover
the lost track actively by sharing the tracking results between cameras in the network.
This explains the outperformance of our multi-camera tracking approach to the single-
view approach. Visually, we observe that the trajectories obtained in the single-camera
setting are notably shorter than those obtained by our multi-camera method. Also, the
labels of tracked objects (see the labels in the last frame) are much higher in single-camera
that in multi-camera mode. This is directly linked to the unique ability of the multiple-
camera algorithm to recover to the state of targets. The detailed results of all experiments
are shown in Appendix A.
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Figure 4.12 � Performance comparison between the reference single-camera method [229]
and our multi-camera approach using IDF1 and MOTA scores.
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4.3 Target Association via Unbalanced Optimal Transport

This section presents our second data association approach, which adopts the re-
identi�cation strategy in multi-object tracking within our multi-camera tracking frame-
work. As we mentioned earlier in this dissertation, one of the interpretations of multi-
object tracking is to identify it from detection sets gathered from camera videos. In our
case study, we reformulate multiple object tracking problem across multi-view as assigning
targets from one view to another. As a result, within our multi-camera tracking framework,
target association occurs in pairs of cameras for further tracking collaboration. Indeed, tar-
gets being tracked on one view are not necessarily present in another view, then the target
assignment between a pair of cameras is an assignment problem between two non-equal-size
sets of targets. We treat this assignment problem as an unbalanced Optimal Transport on
a feature space where the matching between projections of two sets can be more accurate.
We develop a deep distance learning method based on optimal transport to project tracking
target features, including appearances and locations on a feature space. The experiments
of this approach are conducted on the same multi-camera tracking video datasets in the
previous section. The experimental results show the e�ectiveness of our second association
method in comparison with the method in the last section.

4.3.1 Motivation: Combining multiple distance features

Before describing our Optimal Transport assignment approach, in this section, we ex-
plain the necessary demand for utilizing both appearance features and trajectories of tar-
gets in the re-identi�cation across di�erent views during the tracking process, as well as
the problems of combining those features. As the primitive idea of using all distances of
features presented in the last section, we �rst investigate the performance of each feature
individually in order to combine them later. To deeply analyze the impacts of each type of
distance on tracking performance, the experiments in the last section are now replicated,
but with only one type of distance for each experiment. Each identity has its own appear-
ance, which is represented as a target on each camera; these targets are associated with
their identity via the given ground truth data. At each frame, we already know correspon-
dences of the targets across camera views, all feature distances between the targets across
views of the same identities (i.e., relevant elements), as well as all the feature distances of
those not belonging to the same identities (i.e., irrelevant elements) are straightforwardly
computed. The whole process operates on all video frames to collect all samples. During
the tracking process, as described in Section 4.2.1, given a primary target of a selected
camera, we want to �nd all its corresponding targets of other cameras. On all other cam-
eras, any target, whose distance with the selected camera's target is smaller than a value ε,
is predicted as belonging to the same identity as the primary target's identity (i.e., selected
samples), otherwise it does not (i.e., unselected samples). From these collections of sam-
ples, the precision and recall scores for each feature distance can be measured. We then
construct the precision-recall curves of all feature distances, including their Area Under
Curve (AUC) scores in Fig. 4.13.

In this experiment, we assume that our only-path multi-camera tracking process gives
the �good-enough� tracking results. This is because most of the time, in the video sequences,
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targets are not occluded in the sense that the frames of �not-being occluded� outnumbering
the frames of �being occluded�. Therefore, tracklets obtained from the tracking algorithm
are presumably not too short, then using their paths to identify targets is relatively accu-
rate. Notice that this quantitative analysis aims to evaluate di�erent appearance features
with respect to the trajectory feature. The experimental results (Fig. 4.13) show that the
trajectory or �path� feature is always ahead of all other appearance features with the AUC
score of 0.951 in comparison with the second-best features (resNet50 [99]) AUC = 0.219.
Both learned and hand-crafted appearance features, which describe the distinctiveness of
target based on their appearance, are far less e�ective than trajectory. Overwhelmingly,
this quantitative analysis implies that for multiple target tracking, the historical positions
of targets, i.e., trajectory or path, is undeniably the most relevant and distinctive feature,
which is actively showing the uniqueness of a target among others in di�erent views of
the camera network. However, the appearance of targets remains essential in many cases
where the trajectories are relatively close or too short due to the tracking failure in single
views. In those cases, the trajectory of targets appears as a weak feature for re-identifying
them across cameras; meanwhile, those targets can only be distinguished by their physical
appearance (e.g., clothes, body). Obviously, appearance features are essential in target as-
sociation, but using raw appearances of targets from di�erent cameras for data association
is improbable and ambiguous, as mentioned in Sec. 2.5.4. Within a camera, between two
frames, the appearance of a target seems unchanged, and the use of appearance features
is straightforward. Between cameras, the variability of appearance for the same identity is
much more evident.
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Figure 4.13 � The Precision-Recall curves of di�erent feature for target clustering show-
ing the outperformance of trajectory or path feature over all others which are based on
appearance of targets.
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4.3. TARGET ASSOCIATION VIA UNBALANCED OPTIMAL TRANSPORT

This justi�es our motivation to develop a novel target association method based on
optimal transport, which takes into account the appearance variability across cameras
in data association. The proposed approach genuinely puts together the positions and
appearances of a target from di�erent cameras on a unique feature space where the targets'
embeddings are located closely together if they belong to the same identity, otherwise far
away if their identities are di�erent. We detail our proposed approach in the next section.

4.3.2 Proposed Targets Association Method

�  �1
1 , … , ��

1 

�1
2 , … , ��

2 = {                  }

Deep embedding
net

CNN appearance 
feature extractor

Deep embedding
net

Unbalanced
Optimal Transport

plan

 

 (                             )(�, ;	),  
(�, ) 

 (�, ;	)  

 

(�, ) 

Ground-truth
Assignment

Shared learnable
parameters w

Source

Target

Independent

feature extraction

Distance learning

Updating weights via back-propagation

Assignment 
prediction

Thresholding

Location
ground-projection

CNN appearance 
feature extractor

Location
ground-projection

Camera 2

Camera 1

Loss function

Figure 4.14 � The pipeline of our distance learning framework. The red arrow indicates
the direction during training process, meanwhile the blue lines for testing.

This section describes in detail our approach to solving target association across cameras
problem via optimal transport. In the same context as Sec. 4.2, within a frame-synchronized
overlapping camera network, associating targets between di�erent cameras emerges as the
main issue for collaborating multiple cameras to track multiple targets. Let's consider a
pair of cameras C1 and C2 at a single frame. Given N targets {v11, . . . , v1n} in the camera
C1 and M targets {v21, . . . , v2m} in the camera C2 with n 6= m, in general, the formulation
of the problem is to match N targets from camera C1 to M targets from camera C2.
Each target vkn is represented by an appearance feature Φk

n, which is extracted from frame
image, and a position, which is the projection of the target's feet from frame image onto
the 3D ground plane. We reformulate the target assignment within a pair of cameras as an
Optimal Transport problem. The two sets of targets v1i

n and v2i
m are used to de�ne two

empirical distributions supported on a feature space X .

α :=
n∑
i=1

aiδxi , (4.12)

β :=
m∑
j=1

bjδyj , (4.13)

where δx is the Dirac at x ∈ X and ai and bj are the corresponding weights. In our setting,
we will consider uniform discrete measures, which is, all the components of a weight vector
are equal.
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4.3. TARGET ASSOCIATION VIA UNBALANCED OPTIMAL TRANSPORT

The balanced optimal transport problem involves measures α and β with the same
total mass, usually taken, without loss of generality, to be probability measures. The
Kantorovich's optimal transport problem is de�ned as follows:

LC(a,b) := min
P∈U(a,b)

〈C,P〉 = min
P∈U(a,b)

∑
i,j

CijPij , (4.14)

where C is the ground cost matrix, whose elements Cij are the pairwise distance between
the Dirac δxi of the source measure α and those δyj of the target measure β, and U(a,b)
is a coupling from the source a to the target b. The feasible couplings are de�ned by a set
of coupling matrices {P ∈ Rn×m

+ }, where Pij depicts the amount of mass �owing from xi
toward yj , under the mass preservation constraint.

U(a,b) = {P ∈ Rn×m
+ : P1m = a andPT1n = b}. (4.15)

When the discrete measures involved have large support, Problem (4.14) becomes com-
putationally demanding. A now popular approximate solution has been introduced in [53].
It involves introducing a regularization parameter ε and considers the regularized problem
which is de�ned as follows:

LεC(a,b) = min
P∈U(a,b)

〈P,C〉 − εH(P), (4.16)

where the discrete entropy of a coupling matrix is de�ned as follows:

H(P) = −
∑
i,j

Pi,j (log(Pi,j)) (4.17)

The Optimal Transport (OT) problem with entropic regularization (4.16) has a dual form
following:

min
P>0

max
(f,g)∈Rn×Rm

〈C,P〉 − εH(P) + 〈a−P1m, f〉+ 〈b−PT1n,g〉 (4.18)

where the set of admissible dual variables (called potentials) (f ∈ R
n,g ∈ R

m). The
optimal transport plan solved via the dual problem (4.18) has a closed-form [79]:

P? = π = exp

(
1

ε
(f⊕ g−C)

)
. (α⊗ β) , (4.19)

where f⊕g is denoted as a sum matrix of 2 vectors f and g whose cell {f⊕ g}ij is equal to
fi+gj , in the same manner, α⊗β is also denoted as a product matrix of 2 vectors α and β
whose cell {α⊗ β}ij is equal to αiβj . In our setting, our interest in the regularized version
of OT, as described by Problem (4.16), does not stem from the fact that the involved
discrete measures have a large support, i.e., the number of detections on each frame is on
the order of 10 to 100. From our point of view, the interesting aspect is that the regularized
OT implemented with the Sinkhorn algorithm makes it possible to adjust the ground cost
for a particular application. More precisely, via automatic di�erentiation through the
Sinkhorn iterations, the ground cost can be learned by minimizing an application-speci�c
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cost function. In literature, di�erentiating through the result of Sinkhorn iterations has
recently been proposed in [85] for metric learning for generative modeling, and in [79] for
approximating the gradient of the Sinkhorn divergence.

As an extension of Optimal Transport, unbalanced optimal transport does not require
the mass preservation from source to target. In the formulation of unbalanced optimal
transport [165], the constraint concerning the preservation of marginal distributions is
weakened as the following formulation:

LτC(a,b) = min
ã,b̃

LC(a,b) + τ1Dϕ(a, ã) + τ2Dϕ(b, b̃) (4.20)

= min
P∈Rn×m

+

〈C,P〉+ τ1Dϕ(P1m|a) + τ2Dϕ(PT1n|b) (4.21)

where Dϕ includes `2 norm, `1 norm and Kulback�Leibler divergence DKL. The diver-
gences Dϕ in (4.21) penalize the deviation of the marginal distribution from the distribu-
tions α and β, and then it reinforces the mass conservation constraint (4.15). The cost
LτC(a,b) is regulated by a factor τ . On the one hand, by adjusting τ at a moderate value,
the constraint (4.15) is lightened, and eventually, the mass conservation condition is not
held. In other words, the mass being transferred from the source to target is no longer
equal to one in Unbalanced Optimal Transport. On the other hand, in the case limit when
τ1 = τ2 → +∞, the unbalanced optimal transport problem recovers its original form (4.14)
(i.e., the balanced case).

As mentioned previously, in our overlapping multi-camera scenario, collaboratively
tracking between cameras requires an online target matching in every pair of cameras.
The collaboration mechanism ensures that if a target is out of sight of one camera, it is
still being tracked by another. As a result, this helps the recovery procedure more robust
when the target reappears again on the original camera's view. It is a frequent case that
some targets are being seen by one, but not the other, for several reasons, such as each
camera has its own observation zone (apart from the common overlapping zone between
every pair of cameras) or target being hidden by an obstacle in one view. This can be
implied that not all target found in one view have their correspondence in another view.
Consequently, the Unbalanced Optimal Transport (UOT) can adequately handle this tar-
get matching problem. In computational practice, the Unbalanced Optimal Transport
problem is resolved by a generalized version of the Sinkhorn's algorithm [44].

After reformulating the target association across cameras as an unbalanced optimal
transport problem, there is a challenging issue related to the feature space for Optimal
Transport. Indeed, the target's appearance features Φ, including raw image patch or
extracted from frame image via deep neural nets are bounded, e.g., image patch's values
are between 0 and 1. Meanwhile, the position of targets x is not bounded in the tracking
scene with multiple cameras. Unlike the single-camera case where the image size can limit
the target's feasible position, online tracking with multiple cameras requires a common
space, e.g., the ground, where the position of targets can be converted into the same
measure unit on a measure space, which is not bounded. Furthermore, the combination of
these two features, which is used to compute the distance for Optimal Transport, demands
fairness and balance. Therefore, in the next section, we suggest a novel approach based on
deep neural networks to learn the distance between the source and target distributions.

139



4.3. TARGET ASSOCIATION VIA UNBALANCED OPTIMAL TRANSPORT

4.3.3 Ground cost learning for UOT-based targets association across

cameras

This section describes our proposed deep distance learning framework, which helps to
compute an appropriate distance for the Optimal Transport problem between targets of
one camera and those of another. More concretely, on each camera, the appearance feature
of each target is extracted from its image patch via a deep convolutional neural network,
e.g. VGG [193], ResNet [99], Inception [196]. Meanwhile, its position x is determined by
projecting the target's feet point on the image into the ground plane via the homography
matrix of the camera. Both the appearance and location feature vectors are the input of a
deep neural network whose output is a unique point in a feature space X . The collection of
all points mapped from all targets of a camera via the deep neural net makes up a distri-
bution. As discussed in the previous section, given two distributions created from targets
of a pair of cameras, target association in a pair of two cameras is an Unbalanced Optimal
Transport from a distribution, called source, to the other one, called target. Therefore, the
Optimal Transport plan is followed by a thresholding step, to obtain a binary matrix as
the association matrix of targets between the two cameras. Fig. 4.14 displays the pipeline
of our distance learning framework, which aims to learn ground cost between targets across
cameras so that the optimal transport plan approximates the ground-truth assignment.

Because our deep-learning-based method is a supervised learning approach, it is re-
quired a training data with labels. Our training data are directly generated from the
training sequences of a dataset. Precisely, for each frame of videos, every pair of cameras
gives a single assignment as the label of a sample, while the data of the sample is extracted
from the ground-truth bounding boxes via the deep extracting feature net. In the case of
N cameras in the network, the combination of camera possible pairs is N(N − 1)/2, which
is also the number of samples generated in each frame instant.

In our formulation, for each target i, given Φi ∈ R2048 (i.e., output of ResNet50 back-
bone [99]) and xi ∈ R2 (i.e., target coordinate on ground), the embedding function fw, via
our deep neural network (see Fig. 4.15), projects the appearance feature and location of
target i into the feature space X ,

fw : (Φ, x)→ X ,

where w is the parameters of the deep neural net. As a result of unbalanced optimal
transport, the transport plan shows the mass �ows from point i of source to point j of target.
Based on the properties of optimal transport [165], any pair of close points distributions
source and target results in a signi�cant mass �ow on its transport plan compared with
others. Fig. 4.16 (a) is an optimal transport plan in which ith row represents the mass of
the ith source point being transferred to all target. Since only consistent mass transfers
from one point on source to an unique point in target is sought, the optimal transport plan
between source and target is expected to be well �sparse�, which means that the matching
can be deduced straightforwardly (see Fig. 4.16 (b)) by thresholding the optimal transport
plan. We then can obtain the assignment from source to target.

In terms of optimization, the dissimilarity between the optimal transport plan Pε(α, β)
and the ground-truth assignment G(α, β) is measured by a loss function L. The learnable
parameters w of our neural net is then determined via a minimization problem:
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Figure 4.15 � Proposed distance learning neural net. The neural net consists of a CNN
backbone (e.g. ResNet50 in our case), which extract appearance features from raw image,
and a series of Fully Connected (FC) layers with ReLU layers as activations. Model (a)
with locations at the bottom of the deep distance network, meanwhile, model (b) with
locations at the second last FC layer.

w = arg min
w
L (Pε (.;w) ,G(.)) (4.22)

The loss functions in our framework are formulated as following. Given two sets of targets{
vk1i

}
n
and

{
vk2j

}
m
, each belongs to a single camera, the assignment task is to �nd the

correspondence of common targets in the pair of cameras k1 and k2 while excluding the
targets which can be seen in only one view. Given Pε ∈ Rn×m

+ the transport plan and
G ∈ {0, 1}n×m the ground-truth assignment, we propose our loss which is delivered from
the dual problem of regularized optimal transport problem (4.18). Therefore, the �rst
order condition to reach the optimal solution [165] yields to:

∂Θ(P, f,g)

∂Pij
= 0 (4.23)

where Θ(P, f,g) = 〈C,P〉 − εH(P) + 〈a−P1m, f〉+ 〈b−PT1n,g〉
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Figure 4.16 � Comparison between optimal transport plan (a) and assignment matrix (b)

⇒ ε log(Pij) +Cij − fi − gj = 0 (4.24)

⇒ log(Pij) =
fi + gj −Cij

ε
(4.25)

In the training phase of our experiments, by default, both total masses of the measure α
and β are equal 1, which means the mass is distributed uniformly via the same-mass Diracs
of the distributions, i.e., ai = 1/n and bj = 1/m. The constraint of mass conservation
in the expression (4.15) leads to the sum of all elements of the optimal transport plan P
smaller or equal 1. The equality happens in the case of the balanced optimal transport,
and the inequality for the unbalanced optimal transport case. As a result, the ground-
truth assignment G needs to be normalized to keep the assignment matrix and optimal
transport plan comparable. Hence, from the expression of the transport plan (4.25), our
loss is formulated as follows:

L (Pε,G) =
∑
i,j

∣∣∣∣∣log

(
G′ij

max(Pij , σ)

)∣∣∣∣∣
=

∑
i,j

∣∣log(G′ij)−max(log(Pij), log σ)
∣∣

=
∑
i,j

∣∣∣∣log(G′ij)−max

(
fi + gj −Cij

ε
, log σ

)∣∣∣∣ (4.26)

where the normalized assignment coupling Gi,j is de�ned as

G′ij =
Gij∑

i,jGij + γ
+ σ ≥ σ (4.27)
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with σ is a tiny threshold value, and γ is a normalization constant. This threshold value
is added to avoid the logarithm of zero value in the loss function (4.26) and to set a
margin for near-zero transport, which does not contribute to the distance loss if its value
is extremely low. Additionally, the parameters of our neural net w are updated iteratively

Input : N source-target pairs
{
{Φ1

i , x
1
i }n, {Φ2

i , x
2
i }m

}
N
;

Ground-truth assignment {Gi}N
Output: Optimized parameters w

1 Initializing net parameters w

2 // optimization loop

3 foreach epoch do
4 foreach source-target pair do
5 // Embedding targets to feature space

6 {Xi}n ← f
(
{Φ1

i , x
1
i }n, w

)
7 {Yi}m ← f

(
{Φ2

i , x
2
i }m, w

)
8 Computing Optimal Transport plan Pε ({Xi}n, {Yi}m) via Eq. (4.19)
9 Computing loss L(Pε, G);
10 Back-propagation;
11 Updating parameters w;
12 end

13 end

Algorithm 6: Deep distance learning algorithm.

via minimizing the loss L. The derivation of the loss function to the net parameters
∂L/∂w is computed via back-propagation, which occurs after every optimal transport of a
source-target pair from two cameras. All distance learning steps are resumed in Alg. 6.

4.3.4 Performance evaluation

4.3.4.1 Implementations

In our implementations, we build two versions of distance learning neural nets in order
to compute the source-target distance in the Optimal Transport:

(a) The appearance feature of targets obtained from the backbone of ResNet50, in ad-
dition to their location, is considered as the inputs of our distance learning network.
Our deep network is a series of Full Connected Layers with ReLU layer on the top of
each. The outputs of FC layers are respectively 1024, 512, 256 and 128 (see Fig. 4.15
(a)).

(b) The second model is modi�ed from the original one, but instead of using locations
in the �rst layer, it is concatenated with the second last output layer. The intuition
behind is to emphasize the location feature of targets, because, in tracking applica-
tions, positions of targets are crucial to the performance of tracking algorithm (see
Fig. 4.15 (b)).
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In the deployment phase, numerous experiments with di�erent con�gurations are con-
ducted within the framework of multiple camera tracking of the paper [132]. Therefore,
the target assignment or matching is applied on only two cameras, collaborative tracking
in our multiple camera approach occurs on pairs of cameras, but one camera can reach all
others through the whole tracking process. Precisely, at each frame, each camera consecu-
tively pairs with all other cameras, then within each pair of cameras, an optimal transport
plan C is computed in order to link targets from one camera to the other in the pair. As
mentioned in the section 4.3.2, the value of each cell Cij of the optimal transport plan
implies how likely element i of source set is matched to element j of target set based on
the amount of mass being transferred, named OT value. Therefore, each missing target on
one view is associated with its corresponding target on each other view by an OT value
obtained from its optimal transport plan. Hence, the tracking result of the missing target
is replaced by the �tracked� target with the highest value among its correspondences on all
other cameras.

The Optimal Transport algorithm we used in this paper is a public Optimal Transport
library [80] on Python with GPU parallelization support, named KeOps-GeomLoss4. The
parameters of the unbalanced optimal transport problem (4.18) are set as follows:

• p = 2

• �blur� = 0.5→ ε = blurp

• �reach� = 0.1→ τ1 = τ2 = τ = reachp

• Dϕ = KL : soft Kulback�Leibler divergence

Meanwhile, the other parameters in the expression (4.27) are adjusted for σ = 10−8 and
γ = 10−4. The detailed implementation of our deep distance learning method will be
available publicly on our project page.

4.3.4.2 Tracking benchmark

Datasets. For a consistent comparison with our association approach in the section 4.2,
the datasets used in our experiments remains the same, including the PETS2009 [78] and
EPFL Multi-camera Pedestrian Videos [20] datasets. However, the sequence �PETS09-
S2L1� with 7 cameras, we add another sequence with only 3 cameras �PETS09-S2L2� for
our performance benchmark. Indeed, the additional scenario of surveillance is to track
an in�ux of people moving on the roads with di�erent speed, and this makes it far more
crowded that �PETS09-S2L1�. Since the lack of cameras in this sequence, we set up dual-
camera tracking experiments on view 1 and view 2. View 3 is excluded, due to its small
impact on the sequence and the absence of ground-truth data as well.

Detection. In all Tracking-by-Detection approaches, the detector plays an important
role in tracking performance. Therefore, in these experiments, detections in video frames
are generated by the public high-accuracy detectors, including OpenPose [36] and Mask
R-CNN [97].

4https://www.kernel-operations.io/geomloss/
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Evaluation metric. To evaluate the performance of our second data association ap-
proach in our multi-camera tracking framework, we adopt the same metric used in the
section 4.2.4, which includes the CLEAR MOT and ID measures scores such as: MOTA
(multiple-object tracking accuracy), MOTP (multiple-object tracking precision), IDs (iden-
tity switches), IDF1 (ID F1-score), IDP (ID precision), IDR (ID Recall), False Positive (FP)
and False Negative (FN).

4.3.4.3 Experimental results

The results shown in the following tables are the average values of all views. Concretely,
the overall tracking results of the PETS sequence can be seen in the Table 4.7, Table 4.8 and
Table 4.9. Each score column has either a ↑ or a ↓ indicating whether better corresponds to
higher or lower, respectively. The bold indicates the best scores, and the bold and italic

for the second best. We regroup all methods in our experiments into three categories: the
�rst group single-camera methods [229] as the baseline, full multi-camera methods which
operate with all cameras in the second group, and dual-camera methods in the last group.
Consequently, the experiments on the dual-camera sequence �PETS09-S2L2� only display
the results of the single-camera method (as the baseline) and dual-camera methods in
Tab. 4.9. For convenience, we denote di�erent features for the a�nity measure of targets
across cameras, which are used in our multi-camera methods, as path (i.e., trajectory), pos
(i.e., position) and DL (a) or (b) (i.e., distance learning model (a) or (b)).

Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [229]+∅ 57.49 62.24 333 68.44 68.83

All cam [132]+path 72.8 78.53 98 73.26 70.69

KSP [81]+∅ 21.51 18.16 812 -29.63 64.27

Dual-cam [132]+path 67.96 72.72 126 73.4 70.65
UOT+DL(a) 68.15 73.41 153 73.16 70.81

UOT+DL(b) 66.71 71.73 174 72.19 70.65
UOT+pos 66.04 70.66 163 72.76 70.60

Table 4.7 � Scores on �PETS09-S2L1� multi-camera sequence (with OpenPose detec-
tor [36]).

Primarily, our multi-camera tracking method aims to address hard occlusion problems.
It leads to an important reduction of identity switches and a signi�cant improvement of ID
measures in comparison with the single-camera method. In the sequence �PETS09-S2L1�,
the targets have their complex movements and mutual interactions inside the overlapped
area of the tracking scene. All the methods using the target trajectory as features of a�nity
measure show the better scores in all categories, in comparison with the approaches, which
do not consider historical position record of targets (i.e., trajectories), but only the instant
measure including image patch and position of targets. In detail, the method with full
camera collaboration (All-cam) [132] shows o� its superiority. Meanwhile, our Unbalanced
Optimal Transport approach (UOT) is less robust, but still signi�cantly improves track-
ing scores compared to single-camera approach. Notwithstanding, in the tests with the
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Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [229]+∅ 21.88 25.66 388 55.98 72.53

All cam [132]+path 21.32 25.05 461 54.14 72.47
KSP [81]+∅ 25.85 23.51 695 19.57 62.26

Dual-cam [132]+path 23.23 26.72 382 56.71 72.43
UOT+DL(a) 24.36 31.40 305 46.86 72.91

UOT+DL(b) 25.15 28.88 385 56.93 72.63

UOT+pos 22.00 25.32 381 56.40 72.48

Table 4.8 � Scores on �terrace1� multi-camera sequence (with OpenPose detector [36]).

Method + Feature IDF1↑ IDP ↑ IDs↓ MOTA↑ MOTP↑
Single cam [229]+∅ 53.46 55.53 321 63.66 75.14

Dual-cam [132]+path 55.63 57.67 327 63.79 75.16

UOT+DL(a) 53.16 55.76 310 62.62 75.16

UOT+DL(b) 53.75 55.83 329 63.51 75.16

UOT+pos 57.30 59.38 312 63.74 74.98

Table 4.9 � Scores on �PETS09-S2L2� dual-camera sequence (with Mask R-CNN detec-
tor [97]).

sequence �EPFL/terrace1�, the tracking scene composes 8 identities moving mainly around
a relatively small area covered by a smaller camera number, which makes the scene more
crowded and targets hardly seen by all cameras. Consequently, the original approach [132]
failed to improve tracking results, because, with a smaller camera amount, it is obviously
less probable that there are more than 2 or 3 cameras observed the same target at the
same time. The results in Tab. 4.8 show that all other approaches with dual-camera mode
perform signi�cantly better than the original ones. The next remark is that in the sce-
nario where there are only short trajectories that can be seen, the trajectory feature is
less reliable. In other words, shorter trajectories, less e�ective the original approach is.
Hence, in Tab. 4.8, our distance learning method based on Optimal Transport outweighs
the conventional approaches which only use position or trajectory of target as input feature
for a�nity measure.

Finally, on the tests with dual-camera sequence �PETS09-S2L2�, we excluded the meth-
ods which require more than 2 cameras to be operational, including all camera [132] and
KSP [20]. As single object trackers can generate long trajectories for targets, trajecto-
ries are still an important feature to distinguish targets that we can see in Table 4.9.
The approach [132] with dual-camera only using trajectory as target features archived
the second-best result on ID-measures and the best on MOT-scores. Meanwhile, our UOT
dual-cam approach based on position only obtained the best scores on ID-measures and the
second-best on MOT-scores. Unfortunately, two of our UOT methods using distance learn-
ing could not outperform others in this sequence. The detailed results of all experiments
are shown in Appendix A.
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Chapter 5

Conclusion and perspectives

In this dissertation, we contributed to several aspects of Multiple Camera Multiple
Object Tracking problems that push the advances in the �eld forwards. The following part
summarizes all our research work during this Ph.D.

The Ph.D. program began in late 2016 and aimed to resolve problems in detection and
tracking multi-target with multiple cameras towards an intelligent camera system in urban
environments. We directed our research work to online multiple camera tracking applica-
tions in the context of frame-synchronized, calibrated, and overlapping cameras systems.
Our �rst contribution relates to developing a particle-based multi-cameras framework to
enable multiple cameras to collaborate in order to tackle occlusion problems. Following
the multiple target tracking schemes in the literature on remote sensors, we proposed a
particle generating step on the ground plane to mitigate the degeneration of the proba-
bilistic model through time frames and avoid the error propagation across cameras through
the collaboration process. We proposed the use of sparse coding to encode the target's
appearance in a dictionary, which is well-adapted in our proposed multi-camera frame-
work. The obtained results showed the e�ectiveness of using multiple cameras to handle
long-time occlusion in comparison with single view single object tracking methods. Un-
fortunately, due to the instability of the sparse-coding-based appearance model combining
with a probabilistic model in multiple object tracking, our framework could not reach the
state-of-the-art performance in multiple object tracking. Therefore, we redirected our re-
search toward developing non-probabilistic tracking algorithms, which is adequately �tted
for visual tracking with multiple cameras.

Our second contribution concerns extending a single view MDP tracking approach in a
multiple camera framework. Indeed, our novel proposed framework allows a camera in the
network to share its own tracking results with others. Moreover, multiple camera tracking
involves how to identify targets across cameras, then our work focuses on di�erentiating
targets based on their physical appearance and trajectory. We have evaluated the impact of
di�erent features on discriminating targets across di�erent views with tracking results. Our
experiments demonstrate the superiority of our multiple camera approach to single-camera
ones in multiple objects tracking tasks. The experimental results also imply that targets'
trajectory is a strong discriminative feature among other appearance features in multiple
camera tracking. One of the setbacks of this framework is that the physical appearance
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of targets is not fully employed to distinguish targets in multi-camera tracking problems.
Consequently, this led our latter research to combine the appearance and trajectories into
a more robust and e�ective discriminator of targets in multiple camera's views.

Our �nal contribution involves the target association problem in pairs of cameras. As an
attempt to properly combine two robust discriminative features of targets, we introduced a
novel approach to associate targets in one camera to those in another. The original target
association is an unbalanced assignment between two unequal sets, which is reformulated
as the Unbalanced Optimal Transport problem. As a result of the Optimal Transport plan,
the target assignment would be deduced, which helps identify targets of one camera among
targets of another camera during the tracking process. We adapted the target-matching
process of camera pair to our dual-camera tracking framework in the context of multiple
camera tracking problems. The experimental results revealed a signi�cant improvement
of our dual-camera approach compared with full camera collaboration one in the scenario,
where the targets' trajectory is being cut short and segmented. Our Optimal Transport
approach in dual-camera tracking shows the e�ectiveness and robustness in tracking with
multiple camera con�gurations. Our method could be applied for a generic multi-camera
tracking case in which overlapping condition for all cameras is not necessarily held.

Our future work on multiple camera tracking relates to controlling and automating
multi-camera systems. This makes collaborative tracking with multiple cameras achievable
and practical in both cases of static cameras, in which switching cameras to track targets
is automated, and dynamic cameras, in which they can operate some actions such as pan-
ning, tilting and zooming themselves. For the last recent years, reinforcement learning has
attracted attention of researchers in automation and robotics domains. Indeed, reinforce-
ment learning is one of three main branches of machine learning, alongside with supervised
learning and unsupervised learning, which concerns with how software agents should take
actions in a prede�ned environment in order to maximize the cumulative award received.
Most recent papers on reinforcement learning applied in robotics applications have shown
impressive and promising results in future technologies such as autonomous driving, robot-
assisted surgery, etc. Therefore, automation by reinforcement learning should be explored
in video surveillance technologies, particularly, in multiple camera tracking systems.
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Appendix A

Detail of experimental results

Wemention in the appendix the description of several important indexes of MOT metric
in the table below (for the full description, please visit motchallenge.net).

Index Better Perfect Description
IDF1 higher 100% ID F1 Score [178]. The ratio of correctly

identi�ed detections over the average number of
ground-truth and computed detections.

MOTA higher 100% Multiple Object Tracking Accuracy [22]. This
measure combines three error sources: false pos-
itives, missed targets and identity switches.

MOTP higher 100% Multiple Object Tracking Precision [22]. The
misalignment between the annotated and the
predicted bounding boxes.

MT higher 100% Mostly tracked targets. The ratio of ground-
truth trajectories that are covered by a track
hypothesis for at least 80% of their respective
life span.

ML lower 0% Mostly lost targets. The ratio of ground-truth
trajectories that are covered by a track hypoth-
esis for at most 20% of their respective life span.

FP lower 0 The total number of false positives.
FN lower 0 The total number of false negatives (missed tar-

gets).
IDs lower 0 The total number of identity switches. Please

note that we follow the stricter de�nition of iden-
tity switches as described in [141].

Please see the full tables of experiments in the next pages.
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Résumé :

Le travail présenté dans cette thèse abordent les problématiques de détection et suivi
d'objets, en utilisant un système de caméras collaboratives. L'idée principale de l'utilisation
de plusieurs caméras pour réaliser le suivi est de résoudre les problèmes d'occultation que
les méthodes de suivi de mono-caméra sont incapables de régler. Pour s'adapter des critères
dans plusieurs applications de surveillance, nos travaux se concentrent sur le problème de
suivi en ligne de plusieurs objets dans le contexte de plusieurs caméras synchronisées et
dont les champs de vue sont chevauchent. Dans le cas de notre étude, les axes suivants
ont été étudiés : premièrement, utiliser plusieurs caméras pour suivre une seule cible;
deuxièmement, suivre plusieurs d'objets simultanément; �nalement, réidenti�er les objets
qui réapparaissent ultérieurement dans le champs de vue. Dans les conditions où les tâches
de suivi se font sur une scène en plein air, l'apparence des objets change à cause des
conditions de luminosité variant à l'extérieur, ou des mouvements des objets eux-mêmes.
Souvent, les performances de suivi sont dégradées par les algorithmes défaillants dus à la
perte de leurs cibles. Nous avons développé des algorithmes de suivi avec multi-caméras
qui permettent à chaque caméra de participer au processus de suivi des autres caméras
dans le réseau.

Notre algorithme a été évalué par les métriques communnes sur les bases de données
publiques. Les résultats expérimentaux ont montré la pertinence de nos algorithmes de
suivi multi-caméras par rapport à une seule caméra, ainsi que l'impact des di�érentes
caractéristiques sur la performance de suivi de notre approche de suivi par multi-caméras.

Mots clés :

Détection d'objets, Suivi de mono-objet, Suivi de multi-objet, Suivi de multi-target
multi-camera, Apprentissage profond de caractéristiques, Transport optimal.

Abstract :

The work presented in this thesis concerns the problem of visual multiple object tracking
using a system of collaborative cameras. The main idea of using a multi-camera system in
tracking is to solve occlusion problems, which single-camera tracking methods are unable
to solve. With multiple automated surveillance applications in mind, our work focuses
on the problem of online multi-object tracking in a multi-camera system in which �elds
of view are overlapped, and video frames are synchronized. In the case of our study, the
thesis includes the following objectives: �rstly, to track a single object in a multi-camera
system; secondly, to track multiple objects simultaneously; �nally, to re-identify objects
which possibly reenter the �elds of view of the cameras multiple times. In outdoor tracking
scenes, objects often change their appearance, including their shape, their size, and their
texture, due to the varying lighting condition and the movement of the objects themselves.
This causes tracking algorithms to lose their targets frequently, and therefore degrade
tracking performance. We developed multi-camera tracking algorithms that allow each



INDEX

camera to participate in the overall tracking process of the network to improve its tracking
results.

Our algorithm by the common metrics on public multi-camera video databases. Our
experiments showed the relevance of our multi-camera tracking algorithms to single-camera
ones, as well as the impacts of di�erent characteristic features on the tracking performance
of our multi-camera tracking approach.

Keywords :

Object Detection, Single-Object Tracking, Multi-Object Tracking, Multi-Target Multi-
Camera Tracking, Deep Feature Learning, Optimal Transport.
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